【題目】近年來,我國電子商務(wù)蓬勃發(fā)展.2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達(dá)516億元人民幣,與此同時(shí),相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務(wù)的評價(jià)系統(tǒng).從該評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的交易為80次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對商品滿意與對服務(wù)滿意之間有關(guān)系”?

對服務(wù)滿意

對服務(wù)不滿意

合計(jì)

對商品滿意

80

對商品不滿意

10

合計(jì)

200

(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)都滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.897

10.828

的觀測值:(其中.

【答案】(1)列聯(lián)表見解析,能有;(2)分布列見解析,.

【解析】

1)利用數(shù)據(jù)直接填寫聯(lián)列表即可,求出,即可回答是否有的把握認(rèn)為網(wǎng)購者對商品滿意與對服務(wù)滿意之間有關(guān)系;

2)由題意可得的可能值為0,12,3,分別可求其概率,可得分布列,進(jìn)而可得數(shù)學(xué)期望.

1

服務(wù)滿意

對服務(wù)不滿意

合計(jì)

對商品滿意

80

40

120

對商品不滿意

70

10

80

合計(jì)

150

50

200

因?yàn)?/span>,

所以能有的把握認(rèn)為網(wǎng)購者對商品滿意與對服務(wù)滿意之間有關(guān)系

2)每次購物時(shí),對商品和服務(wù)都滿意的概率為,且的取值可以是01,23.

;

;.

的分布列為:

0

1

2

3

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求處的切線方程;

2)令,已知函數(shù)有兩個極值點(diǎn),且,求實(shí)數(shù)的取值范圍;

3)在(2)的條件下,若存在,使不等式對任意(取值范圍內(nèi)的值)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和,且滿足,數(shù)列是首項(xiàng)為2,公比為q)的等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)正整數(shù)kt,r成等差數(shù)列,且,若,求實(shí)數(shù)q的最大值;

3)若數(shù)列滿足,,其前n項(xiàng)和為,當(dāng)時(shí),是否存在正整數(shù)m,使得恰好是數(shù)列中的項(xiàng)?若存在,求岀m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合的關(guān)系,請計(jì)算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預(yù)測液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為,焦距為2,拋物線的準(zhǔn)線經(jīng)過C的左焦點(diǎn)F.

1)求CM的方程;

2)直線l經(jīng)過C的上頂點(diǎn)且lM交于PQ兩點(diǎn),直線FPFQM分別交于點(diǎn)D(異于點(diǎn)P),E(異于點(diǎn)Q),證明:直線DE的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;

2)若,設(shè)是函數(shù)的兩個極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若拋物線的焦點(diǎn)是,準(zhǔn)線是,點(diǎn)是拋物線上一點(diǎn),則經(jīng)過點(diǎn)、且與相切的圓共( )

A. 0個 B. 1個 C. 2個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知的公共點(diǎn)分別為,,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,過焦點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.

1)求橢圓的方程;

2)已知點(diǎn),,過點(diǎn)的任意一條直線與橢圓交于,兩點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊答案