【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

(1)當(dāng)時,證明:對;

(2)若函數(shù)上存在極值,求實(shí)數(shù)的取值范圍。

【答案】(1)見證明;(2)

【解析】

(1)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;

(2)問題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說明函數(shù)存在極值.

(1)當(dāng)時,,于是,.

又因為,當(dāng)時,.

故當(dāng)時,,即.

所以,函數(shù)上的增函數(shù),于是,.

因此,對,

(2) 方法一:由題意上存在極值,則上存在零點(diǎn),

①當(dāng)時,上的增函數(shù),

注意到,,

所以,存在唯一實(shí)數(shù),使得成立.

于是,當(dāng)時,,上的減函數(shù);

當(dāng)時,,上的增函數(shù);

所以為函數(shù)的極小值點(diǎn);

②當(dāng)時,上成立,

所以上單調(diào)遞增,所以上沒有極值;

③當(dāng)時,上成立,

所以上單調(diào)遞減,所以上沒有極值,

綜上所述,使上存在極值的的取值范圍是.

方法二:由題意,函數(shù)上存在極值,則上存在零點(diǎn).

上存在零點(diǎn).

設(shè),,則由單調(diào)性的性質(zhì)可得上的減函數(shù).

的值域為,所以,當(dāng)實(shí)數(shù)時,上存在零點(diǎn).

下面證明,當(dāng)時,函數(shù)上存在極值.

事實(shí)上,當(dāng)時,上的增函數(shù),

注意到,,所以,存在唯一實(shí)數(shù)

使得成立.于是,當(dāng)時,,上的減函數(shù);

當(dāng)時,上的增函數(shù);

為函數(shù)的極小值點(diǎn).

綜上所述,當(dāng)時,函數(shù)上存在極值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列首項和公差都是,記的前n項和為,等比數(shù)列各項均為正數(shù),公比為q,記的前n項和為

1)寫出構(gòu)成的集合A;

2)若將中的整數(shù)項按從小到大的順序構(gòu)成數(shù)列,求的一個通項公式;

3)若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得同時為(1)中集合A的元素?若存在,寫出所有符合條件的的通項公式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為菱形, , 為等邊三角形

(1)求證: ;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

若曲線在點(diǎn)處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;

時,總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)中,布勞威爾不動點(diǎn)定理是拓?fù)鋵W(xué)里一個非常重要的不動點(diǎn)定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動點(diǎn)定理的基石.布勞威爾不動點(diǎn)定理得名于荷蘭數(shù)學(xué)家魯伊茲·布勞威爾(L.E. J. Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數(shù),存在一個點(diǎn),使得,那么我們稱該函數(shù)為不動點(diǎn)函數(shù),下列為不動點(diǎn)函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠在2016年的減員增效中對部分人員實(shí)行分流,規(guī)定分流人員第一年可以到原單位領(lǐng)取工資的100%,從第二年起,以后每年只能在原單位按上一年的領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計劃創(chuàng)辦新的經(jīng)濟(jì)實(shí)體,該經(jīng)濟(jì)實(shí)體預(yù)計第一年屬投資階段,第二年每人可獲得元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年元,分流后進(jìn)入新經(jīng)濟(jì)實(shí)體,第年的收入為元;

1)求的通項公式;

2)當(dāng)時,是否一定可以保證這個人分流一年后的收入永遠(yuǎn)超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,四邊形為矩形,為等邊三角形,且平面平面.

1)證明:平面平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運(yùn)動會.來自109個國家的9300余名運(yùn)動員同臺競技.經(jīng)過激烈的角逐,獎牌榜的前3名如下:

國家

金牌

銀牌

銅牌

獎牌總數(shù)

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機(jī)抽取3人, 則這3人中中國選手恰好1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年北京市百項疏堵工程基本完成.有關(guān)部門為了解疏堵工程完成前后早高峰時段公交車運(yùn)行情況,調(diào)取某路公交車早高峰時段全程所用時間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機(jī)抽取5個數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機(jī)抽取5個數(shù)據(jù),記為B.

A組:128100,151,125,120

B組:100,102,96101,

己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機(jī)抽取一個數(shù)不小于100的概率是.

1)求a的值;

2)該路公交車全程所用時間不超過100分鐘,稱為“正點(diǎn)運(yùn)行”從A,B兩組數(shù)據(jù)中各隨機(jī)抽取一個數(shù)據(jù),記兩次運(yùn)行中正點(diǎn)運(yùn)行的次數(shù)為X,求X的分布列及期望;

3)試比較A,B兩組數(shù)據(jù)方差的大小(不要求計算),并說明其實(shí)際意義.

查看答案和解析>>

同步練習(xí)冊答案