【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).
(Ⅰ),使得不等式成立,試求實數(shù)的取值范圍;
(Ⅱ)若,求證:.
【答案】(Ⅰ);(Ⅱ)證明見解析.
【解析】
試題第一問根據(jù)題意將問題轉(zhuǎn)化為在區(qū)間上的最大值小于等于在區(qū)間上的最大值,之后根據(jù)函數(shù)的單調(diào)性求得相應(yīng)的最值,第二問轉(zhuǎn)化不等式,將問題轉(zhuǎn)化為一個函數(shù)的最小值大于另一個函數(shù)的最大值,從而求得結(jié)果.
試題解析:(Ⅰ) 由題意,,使得不等式成立,
等價于.1分
,
當(dāng)時,,故在區(qū)間上單調(diào)遞增,
所以時,取得最大值1.即
又當(dāng)時,,
所以在上單調(diào)遞減,所以,
故在區(qū)間上單調(diào)遞減,因此,時,.
所以,則.
實數(shù)的取值范圍是.
(Ⅱ)當(dāng)時,要證,只要證,
即證,由于,
只要證.
下面證明時,不等式成立.
令,則,
當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增.
所以當(dāng)且僅當(dāng)時,取最小值為1.
法一:,則,即,即,
由三角函數(shù)的有界性,,即,所以,而,
但當(dāng)時,;時,
所以,,即
綜上所述,當(dāng)時,成立.
法二:令,其可看作點與點連線的斜率,
所以直線的方程為:,
由于點在圓上,所以直線與圓相交或相切,
當(dāng)直線與圓相切且切點在第二象限時,
直線取得斜率的最大值為.而當(dāng)時,;
時,.所以,,即
綜上所述,當(dāng)時,成立.
法三:令,則,
當(dāng)時,取得最大值1,而,
但當(dāng)時,;時,
所以,,即
綜上所述,當(dāng)時,成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖放置的邊長為的正方形沿軸滾動(無滑動滾動),點恰好經(jīng)過坐標(biāo)原點,設(shè)頂點的軌跡方程是,則對函數(shù)的判斷正確的是( )
A.函數(shù)是奇函數(shù)B.對任意的,都有
C.函數(shù)的值域為D.函數(shù)在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,,的前項和為,且滿足().
(1)試求數(shù)列的通項公式;
(2)令,是的前項和,證明:;
(3)證明:對任意給定的,均存在,使得時,(2)中的恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到點的距離與它到直線的距離的比值為,設(shè)動點形成的軌跡為曲線..
(1)求曲線的方程;
(2)過點的直線與曲線交于兩點,過點作,垂足為,過點作,垂足為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,C、D兩點的坐標(biāo)為,曲線上的動點P滿足.又曲線上的點A、B滿足.
(1)求曲線的方程;
(2)若點A在第一象限,且,求點A的坐標(biāo);
(3)求證:原點到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列中存在三項,按一定次序排列構(gòu)成等比數(shù)列,則稱為“等比源數(shù)列”。
(1)在無窮數(shù)列中,,,求數(shù)列的通項公式;
(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;
(3)已知無窮數(shù)列為等差數(shù)列,且,(),求證:數(shù)列為“等比源數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列 的前項和為,對一切,點都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項公式(不必證明);
(2)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為,,, ;,,,;,…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;
(3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“精準(zhǔn)扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌荆瑒t通過合理調(diào)配車輛運送這批水果的費用最少為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,為垂足,在上,將沿折起,使點到點的位置,連,且,如圖2.
(1)求證:平面;
(2)求鈍二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com