曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡,給出下列三個(gè)結(jié)論:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,
則V F1PF2的面積不大于
1
2
a2正確的個(gè)數(shù)是( 。
分析:由題意曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1),利用直接法,設(shè)動(dòng)點(diǎn)坐標(biāo)為(x,y),及可得到動(dòng)點(diǎn)的軌跡方程,然后由方程特點(diǎn)即可加以判斷.
解答:解:對(duì)于①,由題意設(shè)動(dòng)點(diǎn)坐標(biāo)為(x,y),則利用題意及兩點(diǎn)間的距離公式的得:[(x+1)2+y2]•[(x-1)2+y2]=a4,將原點(diǎn)代入驗(yàn)證,此方程不過(guò)原點(diǎn),所以①錯(cuò);
對(duì)于②,把方程中的x被-x代換,y被-y 代換,方程不變,故此曲線關(guān)于原點(diǎn)對(duì)稱,故②正確;
對(duì)于③,由題意知點(diǎn)P在曲線C上,則△F1PF2的面積S△F1PF2=
1
2
×2×y=y,由①知y2=-x2-1+
4x2+a4
或y2=-x2-1-
4x2+a4
(舍去),
4x2+a4
=t,則x2=
t2-a4
4

∴y2=-
t2-a4
4
-1+t=-
1
4
(t-2)2+
a4
4
a4
4

∴S△F1PF22=y2
1
2
a2,故③正確
故選B.
點(diǎn)評(píng):本題考查利用直接法求出動(dòng)點(diǎn)的軌跡方程,考查利用方程判斷曲線的對(duì)稱性及利用解析式選擇換元法求出值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于
12
a2
其中,所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-2,0)和F2(2,0)的斜率之積為
1
2
的點(diǎn)的軌跡,P為曲線C上的點(diǎn).給出下列四個(gè)結(jié)論:
①直線y=k(x+2)與曲線C一定有交點(diǎn);
②曲線C關(guān)于原點(diǎn)對(duì)稱;
③|PF1|-|PF2|為定值;
④△PF1F2的面積最大值為2
2
.其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省雅安中學(xué)高二(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南師大附中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案