已知三角形ABC中,AB=
2
,BC=1,cosC=
3
4
,則sinA的值為( 。
分析:由C為三角形的內(nèi)角,根據(jù)cosC的值,利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,再由AB與BC的長(zhǎng),利用正弦定理即可求出sinA的值.
解答:解:∵cosC=
3
4
,C為三角形的內(nèi)角,
∴sinC=
1-cos2C
=
7
4
,
∵AB=c=
2
,BC=a=1,
∴由正弦定理
c
sinC
=
a
sinA
得:sinA=
asinC
c
=
7
4
2
=
14
8

故選B
點(diǎn)評(píng):此題考查了正弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△三角形ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,設(shè)B=2A,則
ba
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC中,a、b、c分別為角A、B、C的對(duì)邊,設(shè)向量
m
=(c-2b,a),
n
=(cosA,cosC)
,且
m
n

(1)求角A的大;
(2)若
AB
AC
=4
,求邊長(zhǎng)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)已知三角形ABC中,點(diǎn)D是BC的中點(diǎn),過(guò)點(diǎn)D的直線分別交直線AB,AC于E、F兩點(diǎn),若
AB
=λ
AE
(λ>0),
AC
AF
(μ>0),則
1
λ
+
4
μ
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC中,A,B,C對(duì)邊分別是a,b,c,若a,b,c,成等比數(shù)列,A=60°,則
bsinB
c
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC中,AB=3,BC=
13
,∠BAC=60
°,則AC的長(zhǎng)為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案