等比數(shù)列{an}為遞增數(shù)列,且a4=
2
3
,a3+a5=
20
9
,數(shù)列bn=log3
an
2
(n∈N*
(1)求數(shù)列{bn}的前n項(xiàng)和Sn及其最小值;
(2)若Tn=b1+b2+b22+…+b2n-1,求Tn的最小值.
分析:(1)設(shè)等比數(shù)列的首項(xiàng)a1,公比為q,利用等比數(shù)列的通項(xiàng)公式表示已知條件,可求q,利用an=a4qn-4可求通項(xiàng),然后代入bn=log3
an
2
,結(jié)合等差數(shù)列的求和公式即可求解Sn,結(jié)合等差數(shù)列的性質(zhì)可求最小值
(2)利用等比數(shù)列的求和公式可求Tn,然后結(jié)合數(shù)列的單調(diào)性可求和的最小值
解答:解:(1)設(shè)等比數(shù)列的首項(xiàng)a1,公比為q
則由已知可得,a3(1+q2)=
20
9
a3q=
2
3

兩式相除可得,
1+q2
q
=
10
3

即3q2-10q+3=0
∴q=
1
3
或q=3
∵數(shù)列{an}為遞增數(shù)列且a4=
2
3

∴q=3
an=a4qn-4=
2
3
×3n-4
=2•3n-5
bn=log3
an
2
=n-5
sn=
-4+n-5
2
•n
=
n(n-9)
2

由bn≤0可得n≤5
(Snmin=s4=s5=
-4×5
2
=-10
(2)∵b2n-1=2n-1-5
∴Tn=b1+b2+b22+…+b2n-1=20+21+22+…+2n-1-5n
=
1-2n
1-2
-5n

=2n-5n-1
Tn-1=2n-1-5(n-1)-1
=Tn-Tn-1=2n-1-5>0
∴n≥4
即有T1>T2>T3<T4<T5<…
∴(Tnmin=T3=23-5×3-1=-8
點(diǎn)評(píng):本題主要考查了等比數(shù)列的通項(xiàng)公式求和公式的應(yīng)用,等差數(shù)列的求和公式,及利用數(shù)列的單調(diào)性求解數(shù)列的最值,屬于數(shù)列知識(shí)的綜合應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(Ⅰ)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)公式及Tn關(guān)于n的表達(dá)式.
(Ⅲ)記bn=log(1+2an)Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2010的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•石景山區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式.
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)二模)對(duì)數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項(xiàng)公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的遞推公式為
a1=2
an+1=3an+1
,bn=an+
1
2
(n∈N*),
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•石景山區(qū)一模)若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(Ⅰ)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
(Ⅱ)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式;
(Ⅲ)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案