【題目】若奇函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),又f(﹣3)=0,則不等式f(x)<0的解集為(
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(0,3)
D.(﹣∞,﹣3)∪(3,+∞)

【答案】C
【解析】解:∵f(x)是奇函數(shù),f(﹣3)=0, ∴f(﹣3)=﹣f(3)=0,解f(3)=0.
∵函數(shù)在(0,+∞)內(nèi)是增函數(shù),
∴當(dāng)0<x<3時(shí),f(x)<0.
當(dāng)x>3時(shí),f(x)>0,
∵函數(shù)f(x)是奇函數(shù),
∴當(dāng)﹣3<x<0時(shí),f(x)>0.
當(dāng)x<﹣3時(shí),f(x)<0,
則不等式f(x)<0的解集{x|x<﹣3或0<x<3}.
故選C.

【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相反的單調(diào)性才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)一動(dòng)點(diǎn)與兩定點(diǎn)連線(xiàn)的斜率之積等于.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)直線(xiàn) )與軌跡交于、兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長(zhǎng)為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關(guān)于點(diǎn) 對(duì)稱(chēng)
B.關(guān)于點(diǎn) 對(duì)稱(chēng)
C.關(guān)于直線(xiàn) 對(duì)稱(chēng)
D.關(guān)于直線(xiàn) 對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中, , 是自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)函數(shù),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司針對(duì)企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬(wàn)元.保險(xiǎn)公司把職工從事的所有崗位共分為三類(lèi)工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類(lèi)工種的每賠付頻率如下表(并以此估計(jì)賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤(rùn)都不得超過(guò)保費(fèi)的20%,試分別確定各類(lèi)工種每張保單保費(fèi)的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類(lèi)工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購(gòu)買(mǎi)一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類(lèi)保險(xiǎn)上限購(gòu)買(mǎi),試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠(chǎng)節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程 = x+ ;
(2)已知該廠(chǎng)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤? (參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)計(jì)算回歸系數(shù) , .公式為

查看答案和解析>>

同步練習(xí)冊(cè)答案