分析 根據(jù)分段函數(shù)f(x)是(-∞,+∞)上的減函數(shù),列出關(guān)于a的不等式組,求出解集即可.
解答 解:因?yàn)楹瘮?shù)f(x)=$\left\{\begin{array}{l}{(4a-1)x+4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的減函數(shù),
所以$\left\{\begin{array}{l}{0<a<1}\\{4a-1<0}\\{(4a-1)×1+4a≥a}\end{array}\right.$,
解得$\frac{1}{7}$≤a<$\frac{1}{4}$,
所以a的取值范圍是[$\frac{1}{7}$,$\frac{1}{4}$).
故答案為:[$\frac{1}{7}$,$\frac{1}{4}$).
點(diǎn)評(píng) 本題考查了分段函數(shù)的單調(diào)性問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,1) | B. | (1,0) | C. | (-1,0) | D. | (0,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(a)<f(2a) | B. | f(a2)<f(a) | C. | f(a2+a)<f(a) | D. | f(a2+1)>f(a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<1 | B. | a≥1 | C. | b≤1 | D. | b≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com