【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳疼減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

【答案】D
【解析】解:由題意可得:此人每天所走的路形成等比數(shù)列{an},其中q= ,S6=378. 則 =378,解得a1=192.
后3天一共走了a4+a5+a6= =192× × =42.
故選:D.
由題意可得:此人每天所走的路形成等比數(shù)列{an},其中q= ,S6=378.利用等比數(shù)列的通項公式與求和公式即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下有四種說法,其中正確說法的個數(shù)為:
(1)命題“若am2<bm2”,則“a<b”的逆命題是真命題
(2)“a>b”是“a2>b2”的充要條件;
(3) “x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“”是“”的必要不充分條件.
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sin(x+ ),1), =(4,4cosx﹣
(1)若 ,求sin(x+ )的值;
(2)設f(x)= ,若α∈[0, ],f(α﹣ )=2 ,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知過點的直線的參數(shù)方程是為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.

)求直線的普通方程和曲線的直角坐標方程;

)若直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點()處的切線方程;

(2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設復數(shù)z1=(a2-4sin2θ)+(1+2cos θ)i,aR,θ(0,π),z2在復平面內(nèi)對應的點在第一象限,且z=-3+4i.

(1)z2|z2|.

(2)z1z2,求θa2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,離心率

(1)求橢圓的標準方程

(2)若分別是橢圓的左、右焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)=a+ (a,b∈R)有最大值和最小值,且最大值與最小值之和為6,則3a﹣2b=(
A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習冊答案