精英家教網 > 高中數學 > 題目詳情
棱長為1的正方體ABCD-A1B1C1D1被以A為球心,AB為半徑的球相截,則所截得幾何體(球內部分)的表面積為( )
A.
B.
C.2π
D.
【答案】分析:以A為球心AB為半徑的球截正方體時經過B,D,A1三點,正方體內的部分球就是整球的8分之一,過A的正方體的三個相鄰的表面上被截得三個四分之一圓弧,所以所截得的球的一部分的表面積為整球表面積的8分之一加三個半徑為1的圓的面積的4分之1,即可得到結論.
解答:解:以A為球心AB為半徑的球截正方體時經過B,D,A1三點,正方體內的部分球就是整球的8分之一,過A的正方體的三個相鄰的表面上被截得三個四分之一圓弧,所以所截得的球的一部分的表面積為整球表面積的8分之一加三個半徑為1的圓的面積的4分之1,即S=π•12×3+×4π•12=π   
故選A.
點評:本題考查幾何體(球內部分)的表面積,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在棱長為1的正方體ABCD-A1B1C1D1中,M為AB的中點,N為BB1的中點,O為平面BCC1B1的中心.
(1)過O作一直線與AN交于P,與CM交于Q(只寫作法,不必證明);
(2)求PQ的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

11、棱長為1的正方體ABCD-A1B1C1D1中,E,F分別為AB,BC的中點,試在棱B1B上找一點M,使得D1M⊥平面EFB1

查看答案和解析>>

科目:高中數學 來源: 題型:

15、某種游戲中,黑、黃兩個“電子狗”從棱長為1的正方體ABCD-A1B1C1D1的頂點A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.黑“電子狗”爬行的路線是AA1→A1D1→…,黃“電子狗”爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數).設黑“電子狗”爬完2008段、黃“電子狗”爬完2009段后各自停止在正方體的某個頂點處,這時黑、黃“電子狗”間的距離是
1

查看答案和解析>>

科目:高中數學 來源: 題型:

以棱長為1的正方體ABCD-A1B1C1D1的棱AB、AD、AA1所在的直線為坐標軸,建立空間直角坐標系,則平面AA1B1B對角線交點的坐標為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知棱長為1的正方體容器ABCD-A1B1C1D1,在棱AB,BB1以及BC1的中點處各有一個小孔E、F、G,若此容器可以任意放置,則該容器可裝水的最大容積為( 。

查看答案和解析>>

同步練習冊答案