已知直三棱柱ABC-A1B1C1,底面△ABC是等腰三角形,∠BAC=120°,數(shù)學(xué)公式,CN=3AN,點M,P,Q分別是AA1,A1B1,BC的中點.
(Ⅰ)求證:直線PQ∥平面BMN;
(Ⅱ)求直線AB與平面BMC所成角的正弦值.

(Ⅰ)證明:如圖,
取AB中點G,連結(jié)PG,QG分別交BM,BN于點E,F(xiàn),
則E,F(xiàn)分別為BM,BN的中點.
,,
且CN=3AN,所以 ,
所以
所以 EF∥PQ,又 EF?平面BMN,PQ?平面BMN.
所以 PQ∥平面BMN;
(Ⅱ)解:連接AQ,∵△ABC是等腰三角形,Q是BC的中點,∴AQ⊥BC,連接MQ,
作AO⊥MQ于O,連接BO,∵M(jìn)A⊥平面ABC,∴MA⊥BC,
又AQ⊥BC,∴BC⊥平面AQM,∴BC⊥AO.
∵AO⊥MQ,∴AO⊥平面BCM,∴∠ABO就是AB與平面ABC所成在角.
在Rt△AQC中,∵∠QAC=60°,∴AQ=2.
在△RtAQM中,∵M(jìn)Q=2,由AM•AQ=MQ•AO,得,
所以
分析:(Ⅰ)要證明直線PQ∥平面BMN,可在平面BMN中找到一條與PQ平行的直線即可,根據(jù)題目給出的P,Q分別是A1B1,BC的中點,想到取AB的中點G,連接PG,QG后分別交BM,BN于點E,F(xiàn),根據(jù)題目給出的線段的長及線段之間的關(guān)系證出
,從而得到EF∥PQ,然后利用線面平行的判定即可得證;
(Ⅱ)求直線AB與平面BMC所成角的正弦值,首先是找角,由題意能夠得到平面BMC⊥平面AMQ,所以直接過A作MQ的垂線
AO,連接BO,在直角三角形AOB中求解∠BAO的正弦值.
點評:本題考查了直線與平面平行的判定,考查了線面角,證明線面平行時,常借助于三角形的中位線得線線平行,求線面角時,關(guān)鍵是把找出的角能夠放在一個易于求解的三角形當(dāng)中,此題是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點.
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直三棱柱ABC-A1B1C1的所有棱長都相等,且D,E,F(xiàn)分別為BC,BB1,AA1的中點.
(I) 求證:平面B1FC∥平面EAD;
(II)求證:BC1⊥平面EAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F(xiàn),H分別是AC,AB,BC的中點,
(I)證明:EF⊥AH;    
(II)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點.
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點,試確定點E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分別是棱BC.CC1.B1C1的中點.A1Q=3QA, BC=
2
AA1

(Ⅰ)求證:PQ∥平面ANB1;
(Ⅱ)求證:平面AMN⊥平面AMB1

查看答案和解析>>

同步練習(xí)冊答案