(2013•南通二模)設(shè)復(fù)數(shù)z滿足|z|=|z-1|=1,則復(fù)數(shù)z的實部為
1
2
1
2
分析:利用復(fù)數(shù)的運算法則和模的計算公式即可得出.
解答:解:設(shè)z=a+bi(a,b∈R).∵復(fù)數(shù)z滿足|z|=|z-1|=1,∴
a2+b2
=1
(a-1)2+b2
=1
,解得a=
1
2

∴復(fù)數(shù)z的實部為
1
2

故答案為
1
2
點評:熟練掌握復(fù)數(shù)的運算法則和模的計算公式是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通二模)選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通二模)某籃球運動員在7天中進行投籃訓(xùn)練的時間(單位:分鐘)用莖葉圖表示(如圖),圖中左列表示訓(xùn)練時間的十位數(shù),右列表示訓(xùn)練時間的個位數(shù),則該運動員這7天的平均訓(xùn)練時間為
72
72
分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通二模)設(shè)實數(shù)x1,x2,x3,x4,x5均不小于1,且x1•x2•x3•x4•x5=729,則max{x1x2,x2x3,x3x4,x4x5}的最小值是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通二模)選修4-2:矩陣與變換
設(shè)曲線2x2+2xy+y2=1在矩陣M=
m0
n1
(m>0)對應(yīng)的變換作用下得到的曲線為x2+y2=1,求矩陣M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通二模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標xOy中,已知圓C1x2+y2=4,圓C2:(x-2)2+y2=4
(1)在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,分別求圓C1,C2的極坐標方程及這兩個圓的交點的極坐標;
(2)求圓C1與C2的公共弦的參數(shù)方程.

查看答案和解析>>

同步練習冊答案