函數(shù)f(x)=
1
x
1n(
x2-3x+2
)+
-x2-3x+4
的定義域為( 。
A、(-4,0)∪(0,1)
B、[-4,0)∪(0,1)
C、(-4,1)
D、[-4,1)
考點:對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由分式的分母不等于0,對數(shù)式的真數(shù)大于0,根式內(nèi)部的代數(shù)式大于等于0列不等式組求解x的取值集合得答案.
解答: 解:由
x≠0
x2-3x+2>0
-x2-3x+4≥0
,解得:-4≤x<1且x≠0.
∴原函數(shù)的定義域為{x|-4≤x<1且x≠0}=[-4,0)∪(0,1).
故選:B.
點評:本題考查了函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)Z=2+arcsinx+(π-3)xi,(x∈R,i是虛數(shù)單位),在復(fù)平面上的對應(yīng)點只可能位于 ( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=cos
5
,b=30.3,c=log53,則(  )
A、c<b<q
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(2x)=x2-2x,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有f[f(x)-
1
x
]=2,則f(
1
2013
)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+(p+2)x+4=0},且A∩R≠∅,求P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
1
2
≤2x≤8,x∈R},B={x|2-m≤x≤2+m,x∈R},
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右頂點A作斜率為-1的直線與橢圓的另一個交點為M,與y軸的交點為B,若|AM|=|MB|則橢圓的離心率為( 。
A、
6
2
B、
2
3
C、
6
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
的離心率e=
2
3
,A、B是橢圓上關(guān)于x、y軸均不對稱的兩點,線段AB的垂直平分線與x軸交于點P(1,0).
(1)設(shè)AB的中點為C(x0,y0),求x0的值;
(2)若F是橢圓的右焦點,且AF+BF=3,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案