【題目】已知數(shù)列{an}中,a10,an+1an+6n+3,數(shù)列{bn}滿足bnn,則數(shù)列{bn}的最大項為第_____

【答案】11

【解析】

首先利用疊加法求出數(shù)列的通項公式,進一步利用數(shù)列的單調(diào)性的應用求出數(shù)列的最大項.

數(shù)列{an}中,a10,an+1an+6n+3,則an+1an6n+3,整理得anan16n1+3a2a16×1+3,

利用疊加法得到ana161+2+…+n1+3n1),解得an3n1)(n+1),故,

所以足bnn

,整理得,

,當n≥1時,bn單調(diào)遞增,當時,單調(diào)遞減,

n10時,b101109,n11時,b1113210,

1,即b11b10,

故當n11時,數(shù)列{bn}存在最大項為第11項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

①當時,函數(shù)______零點;

②若函數(shù)的值域為,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市推行“共享汽車”服務,租用汽車按行駛里程加用車時間收費,標準是“1元/公里+0.2元/分鐘”,剛在該市參加工作的小劉擬租用“共享汽車“上下班.單位同事老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾上下班總共也需要用時大約1小時”,并將自己近50天往返開車的花費時間情況統(tǒng)計如下

時間(分鐘)

[15,25

[25,35

[35,45

[45,55

[55,65

次數(shù)ξ

8

18

14

8

2

將老李統(tǒng)計的各時間段頻率視為相應概率,假定往返的路況不變,而且每次路上開車花費時間視為用車時間.

1)試估計小劉每天平均支付的租車費用(每個時間段以中點時間計算);

2)小劉認為只要上下班開車總用時不超過45分鐘,租用“共享汽車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設其中有ξ天為“最優(yōu)選擇”,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

)設是函數(shù)的導函數(shù),求函數(shù)在區(qū)間上的最小值;

)若,函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=cos),把函數(shù)fx)的圖象向左平移個單位得函數(shù)gx)的圖象,則下面結(jié)論正確的是(

A.函數(shù)gx)是偶函數(shù)

B.函數(shù)gx)的最小正周期是

C.函數(shù)gx)在區(qū)間,3π]上是增區(qū)數(shù)

D.函數(shù)gx)的圖象關于直線xπ對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線的方程為2ρcosθ+5ρsinθ80,曲線E的方程為ρ4cosθ

1)以極點O為直角坐標原點,極軸為x軸正半軸建立平面直角坐標系,分別寫出直線l與曲線E的直角坐標方程;

2)設直線l與曲線E交于AB兩點,點C在曲線E上,求△ABC面積的最大值,并求此時點C的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,其中為實數(shù).

1)若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍;

2)若上是單調(diào)增函數(shù),試求的零點個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:“x[1,2], x2-lnx-a≥0”與命題q:“xR,x2+2ax-8-6a=0”都是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的右焦點,過點的直線交橢圓于兩點. 的中點,直線與直線交于點.

(Ⅰ)求征:

(Ⅱ)求四邊形面積的最小值.

查看答案和解析>>

同步練習冊答案