已知函數(shù)f(x)=
1
3
x3-
1
2
x2+cx+d在x=2處取得極值.
(1)求c的值;
(2)當(dāng)x<0時,f(x)<
1
6
d2+2d恒成立,求d的取值范圍.
(1)∵f(x)在x=2處取得極值,
∴f′(2)=4-2+c=0,
∴c=-2.
∴f(x)=
1
3
x3-
1
2
x2-2x+d,
(2)∵f′(x)=x2-x-2=(x-2)(x+1),
∴當(dāng)x∈(-∞,-1]時,f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)x∈(-1,2]時,f′(x)<0,函數(shù)單調(diào)遞減.
∴x<0時,f(x)在x=-1處取得最大值
7
6
+d
,
∵x<0時,f(x)<
1
6
d2+2d
恒成立,
7
6
+d
1
6
d2+2d
,即(d+7)(d-1)>0,
∴d<-7或d>1,
即d的取值范圍是(-∞,-7)∪(1,+∞).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-
3
2
x2+2x+5

(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若曲線y=f(x)與y=2x+m有三個不同的交點(diǎn),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax+blnx.
(1)當(dāng)x=2時f(x)取得極小值2-2ln2,求a,b的值;
(2)當(dāng)b=-1時,若在區(qū)間(0,e]上至少存在一點(diǎn)x0,使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點(diǎn),求a的取值范圍;
(3)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t).記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若x∈[0,+∞),則下列不等式恒成立的是( 。
A.ex≤1+x+x2B.
1
1+x
≤1-
1
2
x+
1
4
x2
C.cosx≥1-
1
2
x2
D.ln(1+x)≥x-
1
8
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一塊半徑為r的殘缺的半圓形材料ABC,O為半圓的圓心,OC=
1
2
r
,殘缺部分位于過點(diǎn)C的豎直線的右側(cè).現(xiàn)要在這塊材料上截出一個直角三角形,有兩種設(shè)計方案:如圖甲,以BC為斜邊;如圖乙,直角頂點(diǎn)E在線段OC上,且另一個頂點(diǎn)D在
AB
上.要使截出的直角三角形的面積最大,應(yīng)該選擇哪一種方案?請說明理由,并求出截得直角三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1處取得極值.
(1)求b的值;
(2)若當(dāng)x∈[1,2]時,f(x)<c2恒成立,求c的取值范圍;
(3)c為何值時,曲線y=f(x)與x軸僅有一個交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(1)當(dāng)a=-4時,求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時,討論方程f(x)=0根的個數(shù).
(3)若a>0,且對任意的x1,x2∈[1,e],都有|f(x1)-f(x2)|≤|
1
x1
-
1
x2
|
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+2(a∈R)且曲線y=f(x)在點(diǎn)(2,f(2))處切線斜率為0.
求:(Ⅰ)a的值;
(Ⅱ)f(x)在區(qū)間[-1,3]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案