等比數(shù)列的前2項(xiàng)和為2,前4項(xiàng)和為10,則它的前6項(xiàng)和為( 。
A、31B、32C、41D、42
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由題意,S2,S4-S2,S6-S4成等比數(shù)列,代入條件,即可求得結(jié)論.
解答: 解:∵每相鄰兩項(xiàng)的和也成等比數(shù)列,
∴S2,S4-S2,S6-S4成等比數(shù)列,
即2,8,S6-10成等比數(shù)列,
∴82=2(S6-10),
∴S6=42.
故選:D.
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟練掌握等比數(shù)列的有關(guān)性質(zhì),并且進(jìn)行正確的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x3-ax-1=0在區(qū)間[2,+∞)內(nèi)是增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{1+(1+2)+(1+2+4)+…+(1+2+…+2n-1)}的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=2,AC=1,向量
BC
AB
+3
AC
垂直,則BC=( 。
A、
2
B、
3
C、2
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M,N為平面區(qū)域
3x-y-6≤0
x-y-2≥0
x≥0
內(nèi)的兩個(gè)動(dòng)點(diǎn),向量
a
=(1,3),則當(dāng)
MN
a
時(shí),|
MN
|2的最大值是( 。
A、4B、8C、20D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(2,t)與向量
b
=(1,3)共線,則t等于( 。
A、-6
B、
2
3
C、
3
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)在(0,+∞)上的導(dǎo)函數(shù)為f′(x),且不等式xf′(x)>f(x)恒成立,又常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是( 。
A、af(a)>bf(b)
B、bf(a)<af(b)
C、bf(a)>af(b)
D、af(a)<bf(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖程序運(yùn)行的結(jié)果是(  )
A、11B、13C、15D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2lnx
x
(x>0)
(1)求函數(shù)y=f(x)在x=
1
e
處的切線的斜率;
(2)求函數(shù)y=f(x)的最大值;
(3)設(shè)a>0,求函數(shù)h(x)=af(x)在[a,2a]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案