已知圓C:x2+y2-2x+4y-4=0,一條斜率等于1的直線l與圓C交于A,B兩點(diǎn).
(1)求弦AB最長(zhǎng)時(shí)直線l的方程;
(2)求△ABC面積最大時(shí)直線l的方程.
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:(1)欲求弦AB最長(zhǎng)時(shí)直線L的方程,依據(jù)圓的特征:圓的直徑是最長(zhǎng)的弦,只須求出l過(guò)圓心時(shí)的方程即可;
(2)欲求△ABC面積最大時(shí)直線L的方程,因其兩腰定長(zhǎng),故只須頂角為直角時(shí)面積最大,最后利用點(diǎn)到直線的距離公式求解即可;
解答: 解:(1)∵L過(guò)圓心時(shí)弦長(zhǎng)AB最大,圓心坐標(biāo)為(1,-2),∴L的方程為x-y-3=0(4分)
(2)△ABC的面積S=
1
2
CA•CBsin∠ACB=
9
2
sin∠ACB,
當(dāng)∠ACB=
π
2
時(shí),△ABC的面積S最大,
此時(shí)△ABC為等腰三角形;
設(shè)L方程為y=x+m,則圓心到直線距離為
3
2
2
,
從而有
|1+2+m|
2
=
3
2
2

m=0或m=-6,
則L方程為x-y=0或x-y-6=0(8分).
點(diǎn)評(píng):本小題主要考查直線的一般式方程、直線和圓的方程的應(yīng)用、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、函數(shù)與方程思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確的是(  )
A、若三條直線兩兩平行,則這三條直線必共面
B、互不平行的兩條直線是異面直線
C、分別位于兩個(gè)不同平面內(nèi)的兩條直線是異面直線
D、不同在任何一個(gè)平面內(nèi)的兩條直線是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的三視圖和直觀圖如圖所示,其中正視圖和俯視圖均為矩形,側(cè)視圖為直角三角形,M是AB的中點(diǎn).
(1)求證:CM⊥平面FDM;
(2)求直線DM與平面ABEF所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高二(6)班學(xué)生每周用于數(shù)學(xué)學(xué)習(xí)的時(shí)間x(單位:小時(shí))與數(shù)學(xué)成績(jī)y(單位:分)構(gòu)成如下數(shù)據(jù)(15,79),(23,97),(16,64),(24,92),(12,58).求得的回歸直線方程為
y
=2.5x+
a
,則某同學(xué)每周學(xué)習(xí)20小時(shí),估計(jì)數(shù)學(xué)成績(jī)約為多少分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2+ax+b的圖象在點(diǎn)P(0,f(0))處的切線方程為y=3x-2.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)g(x)=f(x)+
m
x-1
是[2,+∞)上的增函數(shù).求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=-
12
13
,且α為第三象限角,求cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):4n+3×4n-1+32×4n-2+…+3n-1×4+3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,四邊形ABCD為平行四邊形,面PAD⊥平面ABCD,PA=PD,Q為AD的中點(diǎn),且QB⊥AD.
(Ⅰ)求證:PB⊥BC;
(Ⅱ)若點(diǎn)M在PC上,且
PM
MC
=
1
2
,求三棱錐C-MQB與四棱錐P-ABCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+2b|x|+6,x∈[-1,a],且a>-1,
(1)若a=0,b=3,求函數(shù)f(x)的值域;
(2)若b=3,且函數(shù)y=f(x)-11有三個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.
(3)若b是常數(shù)且|b|>1,設(shè)函數(shù)y=f(x)的最大值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案