【題目】已知的頂點,邊上的中線所在直線方程為,的角平分線所在直線方程為

(I)求頂點的坐標(biāo);

(II)求直線的方程

【答案】(1).

(2).

【解析】分析:(I)設(shè)頂點的坐標(biāo)為;由頂點在直線上,所以

在直線上, 列方程組求解即可;(II)設(shè)頂點關(guān)于直線的對稱點為,根據(jù)中點在對稱軸上,以及直線垂直斜率之積為列方程組求得的值,利用兩點式可得結(jié)果.

詳解(I)設(shè)頂點的坐標(biāo)為

因為頂點在直線上,所以

由題意知的坐標(biāo)為,

因為中點在直線上,所以,

聯(lián)立方程組,解得頂點的坐標(biāo)為

(II)設(shè)頂點關(guān)于直線的對稱點為

由于線段的中點在在直線上,得方程,

由直線與直線垂直,得方程

;

聯(lián)立方程組,得

顯然在直線上,且頂點的坐標(biāo)為,所以直線的方程為,整理得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,的中點.

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為( )

A. 15 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了日至日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差/攝氏度

發(fā)芽數(shù)/顆

該農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的組數(shù)據(jù)恰好是不相鄰天的數(shù)據(jù)的概率;

(2)若選取的是日與日的兩組數(shù)據(jù),請根據(jù)日至日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得試的線性回歸方程是否可靠?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 時,由n=k的假設(shè)到證明n=k+1時,等式左邊應(yīng)添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)設(shè),且,證明
(1)
(2)不可能同時成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在△ABC中,角A,BC的對邊分別為a,b,c,Ca5,△ABC的面積為10.

1)求bc的值;

2)求cosB)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=(  )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲船在島的正南方處,千米,甲船以每小時千米的速度向正北航行,同時乙船自出發(fā)以每小時千米的速度向北偏東的方向駛?cè),?dāng)甲,乙兩船相距最近時,它們所航行的時間是( )

A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘

查看答案和解析>>

同步練習(xí)冊答案