19.2cos240°=(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

分析 由條件利用誘導公式進行化簡所給的式子,可得結果.

解答 解:2cos240°=2cos(180°+60°)=-2cos60°=-2•$\frac{1}{2}$=-1,
故選:C.

點評 本題主要考查利用誘導公式進行化簡求值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)$y=tanx+\sqrt{πx-2{x^2}}$的定義域是[0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x>1,則不等式x+$\frac{1}{x-1}$的最小值為( 。
A.4B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設a=log36,b=log612,c=log816,則( 。
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.菱形ABCD中,E,F(xiàn)分別是AD,CD中點,若∠BAD=60°,AB=2,則$\overrightarrow{AF}$•$\overrightarrow{BE}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{x+1}$+lg(3-x)的定義域為A,g(x)=x2+1的值域為B,設全集U=R.
(1)求A,B;
(2)求A∩(∁UB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知{an}是等差數(shù)列,{bn}是正項的等比數(shù)列,且a1=b1=2,a5=14,b3=a3
(Ⅰ)求{an}、{bn}的通項公式;
(Ⅱ)求數(shù)列{an}中滿足b4<an<b6的各項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.計算下列各式:
(1)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$
(2)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4-{7^{{{log}_7}2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)求命題p的否定¬p;命題q的否定¬q;
(2)若¬p∨¬q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案