【題目】若定義域為R的奇函數(shù)f(x)滿足f(1+x)=﹣f(x),則下列結(jié)論: ①f(x)的圖象關(guān)于點 對稱;
②f(x)的圖象關(guān)于直線 對稱;
③f(x)是周期函數(shù),且2個它的一個周期;
④f(x)在區(qū)間(﹣1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號是 . (填上你認為所有正確結(jié)論的序號)

【答案】②③
【解析】解:f(2+x)=﹣f(x+1)=f(x), ∴函數(shù)是以2為周期的周期函數(shù),故③是正確的.
∵f(x)為定義域為R的奇函數(shù),
∴f(x)函數(shù)圖象關(guān)于原點對稱,
∵f(x)為周期函數(shù),周期為2且f(1+x)=﹣f(x),
∴f(x)函數(shù)圖象關(guān)于點(k,0)(k∈Z)對稱,故①不對.
∵f(1+x)=﹣f(x)
∴f(x+ )=f(x﹣ +1)=﹣f(x﹣ )=f( ﹣x)
∴f(x)的圖象關(guān)于直線 對稱,故②正確.
f(x)在區(qū)間(﹣1,0)上和在(0,1)上均為單調(diào)函數(shù),但在(﹣1,1)不是單調(diào)函數(shù),故④不正確.
【考點精析】認真審題,首先需要了解奇偶性與單調(diào)性的綜合(奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知ABC三個頂點坐標為A(7,8),B(10,4),C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)中點坐標公式求出中點的坐標,根據(jù)斜率公式可求得的斜率,利用點斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4)C(2,-4)BC中點D的坐標為(6,0),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6)

8xy480

2)由B(10,4),C(2,-4),BC所在直線的斜率為k1,

所以BC邊上的高所在直線的斜率為-1

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
結(jié)束】
17

【題目】已知直線lx2y2m20

(1)求過點(23)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017118日開始,支付寶用戶可以通過掃‘福’字”和“參與螞蟻森林”兩種方式獲得?(愛國福、富強福、和諧福、友善福,敬業(yè)福),除夕夜,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某髙校一個社團在年后開學后隨機調(diào)査了80位該校在讀大學生,就除夕夜之前是否集齊五福進行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

1計算這80位大學生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學生中集齊五福的人數(shù);

2為了解集齊五福的大學生明年是否愿意繼續(xù)參加集五;顒,該大學的學生會從集齊五福的學生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:x∈(﹣∞,0),2x>3x;命題q:x∈(0,+∞), >x3; 則下列命題中真命題是(
A.p∧q
B.(¬p)∧q
C.(¬p)∨(¬q)
D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1求函數(shù)的定義域;

2判斷函數(shù)的奇偶性,并說明理由;

3判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四棱錐 中,四邊形 為平行四邊形, 為等邊三角形,AABE是以 為直角的等腰直角三角形,且 .

(1)證明: 平面 平面BCE;
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(x+φ)(A>0,0<<4,|φ|< )過點(0, ),且當x= 時,函數(shù)f(x)取得最大值1.
(1)將函數(shù)f(x)的圖象向右平移 個單位得到函數(shù)g(x),求函數(shù)g(x)的表達式;
(2)在(1)的條件下,函數(shù)h(x)=f(x)+g(x)+2cos2x﹣1,如果對于x1 , x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)g(x)=f( ﹣x)是( )
A.偶函數(shù)且它的圖象關(guān)于點 (π,0)對稱
B.奇函數(shù)且它的圖象關(guān)于點 (π,0)對稱
C.奇函數(shù)且它的圖象關(guān)于點( . ,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(θ+ )= .圓O的參數(shù)方程為 (θ為參數(shù),r>0).
(Ⅰ)求圓O的圓心的極坐標(ρ≥0,0≤θ<2π );
(Ⅱ)當r為何值時,圓O上的點到直線l的最大距離為2+

查看答案和解析>>

同步練習冊答案