設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右準(zhǔn)線(xiàn)與x軸的交點(diǎn)為M,以橢圓的長(zhǎng)軸為直徑作圓O,過(guò)點(diǎn)M引圓O的切線(xiàn),切點(diǎn)為N,若△OMN為等腰直角三角形,則橢圓的離心率為
2
2
2
2
分析:根據(jù)橢圓的右準(zhǔn)線(xiàn)為直線(xiàn)l,以橢圓的長(zhǎng)軸為直徑作圓O,過(guò)點(diǎn)M引圓O的切線(xiàn),切點(diǎn)為N,如圖.利用△OMN為等腰直角三角形,可得OM=
2
ON,即可求得橢圓的離心率.
解答:解:∵橢圓的右準(zhǔn)線(xiàn)為直線(xiàn)l:x=
a2
c
,
以橢圓的長(zhǎng)軸為直徑作圓O,過(guò)點(diǎn)M引圓O的切線(xiàn),切點(diǎn)為N,如圖,
∵△OMN為等腰直角三角形,
∴OM=
2
ON,即
a2
c
=
2
a

∴e=
c
a
=
2
2

故答案為:
2
2
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),考查等腰直角三角形的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓上的一點(diǎn),C,原點(diǎn)O到直線(xiàn)AF1的距離為
1
3
|OF1|

(Ⅰ)證明a=
2
b
;
(Ⅱ)求t∈(0,b)使得下述命題成立:設(shè)圓x2+y2=t2上任意點(diǎn)M(x0,y0)處的切線(xiàn)交橢圓于Q1,Q2兩點(diǎn),則OQ1⊥OQ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的動(dòng)點(diǎn)Q,過(guò)動(dòng)點(diǎn)Q作橢圓的切線(xiàn)l,過(guò)右焦點(diǎn)作l的垂線(xiàn),垂足為P,則點(diǎn)P的軌跡方程為(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2a2
+y2=1   (a>1)
短軸的一個(gè)端點(diǎn),Q為橢圓上一個(gè)動(dòng)點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•即墨市模擬)設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)-1<a<-
1
2
,則橢圓
x2
a2
+
y2
(a+1)2
=1
的離心率的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案