已知α、β、γ為三個(gè)不重合的平面,a、b、c為三條不同直線,下列命題中不正確的是( 。
a∥c
b∥c
⇒a∥b
;②
a∥γ
b∥γ
⇒a∥b
;③
α∥c
β∥c
⇒α∥β
;④
α∥γ
β∥γ
⇒α∥β
;⑤
a∥c
α∥c
⇒a∥α
;⑥
a∥γ
α∥γ
⇒a∥α
A、④,⑥B、②,③,⑥
C、②,③,⑤,⑥D、②,③
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:由α、β、γ為三個(gè)不重合的平面,a、b、c為三條不同直線,知:
a∥c
b∥c
⇒a∥b
,由平行公理知①正確;
a∥γ
b∥γ
⇒a∥b
、a與b相交或a與b異面,故②錯(cuò)誤;
α∥c
β∥c
⇒α∥β
或α與β相交,故③錯(cuò)誤;
α∥γ
β∥γ
⇒α∥β
,由平面與平面平行的判定定理得④正確;
a∥c
α∥c
⇒a∥α
或a?α,故⑤錯(cuò)誤;
a∥γ
α∥γ
⇒a∥α
或a?α,故⑥錯(cuò)誤.
故選:C.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=x2+mx+n(m,n∈R),當(dāng)y=0時(shí),對應(yīng)x值的集合為{-2,-1},
(1)求m,n的值;
(2)當(dāng)x為何值時(shí),y取最小值,并求此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈(0,2]時(shí),函數(shù)f(x)=ax2+4(a+1)x-3在x=2處取得最大值,則a的取值范圍是(  )
A、-
1
2
≤a<0
B、a≥-
1
2
C、-
1
2
≤a<0或 a>0
D、a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=4
3
y的準(zhǔn)線經(jīng)過雙曲線
y2
m2
-x2=1的一個(gè)焦點(diǎn),則雙曲線的離心率為(  )
A、
3
B、
6
2
C、
3
2
4
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=ax+
1-a
x
在x∈[
1
2
,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(0,-3),動(dòng)點(diǎn)P在x軸上移動(dòng),動(dòng)點(diǎn)Q在y軸上,且∠APQ=
π
2
,點(diǎn)R在直線PQ上且滿足
PQ
=
1
2
QR

(1)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)R的軌跡C的方程;
(2)傾斜角為
π
4
的直線l0與軌跡C相切,求切線l0的方程;
(3)已知切線l0與y軸的交點(diǎn)為B,過點(diǎn)B的直線l與軌跡C交于M、N兩點(diǎn),點(diǎn)D(0,1).若∠MDN為鈍角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司員工義務(wù)獻(xiàn)血,在體檢合格人中,O型血有10人,A型血有5人,B型血有8人,AB型血有3人,從4種血型的人中各選一人去獻(xiàn)血,不同的選法種數(shù)為( 。
A、1200B、600
C、300D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等邊三角形ABC的邊長為1,BC邊上的高是AD,若沿高AD將它折成一個(gè)直二面角B-AD-C,則A到BC的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2x+3在[0,3]上的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案