設(shè)全集U={1,2,3},A={1,2},則∁UA=
 
考點(diǎn):補(bǔ)集及其運(yùn)算
專題:集合
分析:直接利用補(bǔ)集的定義寫出結(jié)果即可.
解答: 解:全集U={1,2,3},A={1,2},則∁UA={3}.
故答案為:{3}.
點(diǎn)評:本題考查結(jié)合的基本運(yùn)算,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sinx,sinx),
c
=(-1,0).
(Ⅰ)若x=
π
3
,求向量
a
c
的夾角;
(Ⅱ)求函數(shù)f(x)=2
a
b
+1的最值以及相應(yīng)的x值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|-1≤x≤4m-2},P={x|x>2或x≤1}.
(1)若m=2,求M∩P;
(2)若M∪P=R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
mlnx+n
ex
(m,n為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=
2
e

(Ⅰ) 求m,n的值;
(Ⅱ) 求f(x)的單調(diào)區(qū)間;
(Ⅲ) 設(shè)g(x)=f′(x)•
exln(x+1)
2
(其中f'(x)為f(x)的導(dǎo)函數(shù)),證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列說法:
①函數(shù)y=
-2x 3
與y=x
-2x
是同一函數(shù);
②空集是任何集合的真子集;
③集合{y|y=x2+1}與集合{(x,y)|y=x2+1}不相等;
④集合{x∈N|x=
6
a
,a∈N*}中只有四個(gè)元素;
其中正確答案的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)樣本的容量為60,分成5組,已知第一組、第三組的頻數(shù)分別是9、10,第二、五組的頻率都為
1
5
,則該樣本的中位數(shù)在( 。
A、第二組B、第三組
C、第四組D、第五組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a4=5,a9=17,則a14=( 。
A、11B、22C、29D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°.平面ACEF⊥平面ABCD,四邊形ACEF是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:BC⊥平面ACEF;
(2)當(dāng)FM為何值時(shí),AM∥平面BDE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+px+q(p,q∈R),若集合{x|f(x)=x}={-2,1},則不等式2|x+p|+|x+q|≤10的解集為
 

查看答案和解析>>

同步練習(xí)冊答案