【題目】已知,如圖所示.

(1)分別寫出終邊落在OAOB位置上的角的集合.

(2)寫出終邊落在陰影部分(包括邊界)的角的集合.

【答案】(1) 終邊落在OA位置上的角的集合為{α|α135°k·360°,k∈Z};終邊落在OB位置上的角的集合為{α|α=-30°k·360°k∈Z};(2) {α|30°k·360°≤α≤135°k·360°,k∈Z}.

【解析】

(1)根據終邊相同的角的表示方法可得到答案;(2)結合(1)及圖形可表示出陰影部分(包括邊界)的角的集合.

(1)終邊落在OA位置上的角的集合為{α|α90°45°k·360°,k∈Z}{α|α135°k·360°,k∈Z};終邊落在OB位置上的角的集合為{α|α=-30°k·360°,k∈Z}.

(2)由題干圖可知,陰影部分(包括邊界)的角的集合是由所有介于[30°,135°]之間的角及終邊與它們相同的角組成的集合,故該區(qū)域可表示為{α|30°k·360°≤α≤135°k·360°,k∈Z}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用水清洗一堆蔬菜上殘留的農藥,對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農藥量的,用水越多洗掉的農藥量也越多,但總還有農藥殘留在蔬菜上.設用單位量的水清洗一次以后,蔬菜上殘留的農藥量與本次清洗前殘留的農藥量之比為函數(shù)

1)試規(guī)定的值,并解釋其實際意義;

2)試根據假定寫出函數(shù)應該滿足的條件和具有的性質;

3)設.現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農藥量比較?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,平面底面,四邊形正方形, 的中點,且,.

(I)證明:

(Ⅱ)求直線與平面所成角的正弦值 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個結論:

(1)若函數(shù)的定義域為,則函數(shù)的定義域是

(2)函數(shù)(其中,且)的圖象過定點;

(3)當時,冪函數(shù)的圖象是一條直線;

(4)若,則的取值范圍是.

其中所有正確結論的序號是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】港珠澳大橋于20181024日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米,橋面為雙向六車道高速公路,大橋通行限速100 km/h. 現(xiàn)對大橋某路段上汽車行駛速度進行抽樣調查,畫出頻率分布直方圖(如圖).根據直方圖估計在此路段上汽車行駛速度的眾數(shù)和行駛速度超過90 km/h的概率分別為

A. B. ,

C. , D. ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調性;

(2)若,證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標中,設橢圓的左右兩個焦點分別為,,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.

(1)求橢圓的方程;

(2)已知,經過點且斜率為,直線與橢圓有兩個不同的交點,請問是否存在常數(shù),使得向量共線?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額如下表

年份

2012

2013

2014

2015

2016

2017

時間代號

1

2

3

4

5

6

儲蓄存款(千億元)

3.5

5

6

7

8

9.5

(1)求關于的回歸方程,并預測該地區(qū)2019年的人民幣儲蓄存款(用最簡分數(shù)作答).

(2)在含有一個解釋變量的線性模型中,恰好等于相關系數(shù)的平方,當時,認為線性回歸模型是有效的,請計算并且評價模型的擬合效果(計算結果精確到).

附:

, .

查看答案和解析>>

同步練習冊答案