已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0),A1、A2是雙曲線的左右頂點,M(x0,y0)是雙曲線上除兩頂點外的一點,直線MA1與直線MA2的斜率之積是
144
25
,
(1)求雙曲線的離心率;
(2)若該雙曲線的焦點到漸近線的距離是12,求雙曲線的方程.
分析:(1)根據(jù)M(x0,y0)(x0≠±a)是雙曲線上一點,代入雙曲線的方程,A1、A2是雙曲線的左右頂點,直線MA1與直線MA2的斜率之積是
144
25
,求出直線MA1與直線MA2的斜率,然后整體代換,消去x0,y0,再由c2=a2+b2,即可求得雙曲線的離心率;
(2)由該雙曲線的焦點到漸近線的距離是12,以及雙曲線的離心率,即可得到,
解答:解;(1)因為M(x0,y0)(x0≠±a)是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)上一點,
x02
a2
-
y02
b2
=1
,得到
y02
b2
=
x02-a2
a2
,故
y02
x02-a2
=
b2
a2
,
又A1(-a,0),A2(a,0),
kMA1-kMA2=
y0
x0+a
-
y0
x0-a
=
y02
x02-a2
=
b2
a2
=
144
25

c2-a2
a2
=e2-1=
144
25
,解之得e=
13
5
; 
(2)取右焦點F(c,0),一條漸近線y=
b
a
x
,即bx-ay=0,
由于該雙曲線的焦點到漸近線的距離是12,則有
|bc-0|
a2+b2
=
bc
c
=b=12
,
由(1)知
b2
a2
=
144
25
,∴a=5,
故雙曲線的方程是
x2
25
-
y2
144
=1
點評:本題考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系,是一道綜合性的試題,考查了學(xué)生綜合運用知識解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點,離心率e=2,點M(
5
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案