(本小題滿(mǎn)分18分)如圖,將圓分成個(gè)扇形區(qū)域,用3種不同顏色給每一個(gè)扇形區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為。求

(Ⅰ);

(Ⅱ)的關(guān)系式;

(Ⅲ)數(shù)列的通項(xiàng)公式,并證明。

解析:(Ⅰ) 當(dāng)時(shí),不同的染色方法種數(shù) ,……………………1分

當(dāng)時(shí),不同的染色方法種數(shù) ,……………………………2分

當(dāng)時(shí),不同的染色方法種數(shù) ,……………………………3分

當(dāng)時(shí),分扇形區(qū)域1,3同色與異色兩種情形

∴不同的染色方法種數(shù) !4分

(Ⅱ)依次對(duì)扇形區(qū)域染色,不同的染色方法種數(shù)為,其中扇形區(qū)域1與不同色的有種,扇形區(qū)域1與同色的有

…………………………………………………8分

(Ⅲ)∵ 

………………

將上述個(gè)等式兩邊分別乘以,再相加,得

,

,…………………………………………………13分

從而!14分

(Ⅲ)證明:當(dāng)時(shí),

當(dāng)時(shí), ,

當(dāng)時(shí),

 ,

…………………………………………………18分w.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分18分)已知數(shù)列{an}、{bn}、{cn}的通項(xiàng)公式滿(mǎn)足bn=an+1-an,cn=bn+1-bn(n∈N*?),若數(shù)列{bn}是一個(gè)非零常數(shù)列,則稱(chēng)數(shù)列{an}是一階等差數(shù)列;若數(shù)列{cn}是一個(gè)非零常數(shù)列,則稱(chēng)數(shù)列{an}是二階等差數(shù)列?(1)試寫(xiě)出滿(mǎn)足條件a=1,b1=1,cn=1(n∈N*?)的二階等差數(shù)列{an}的前五項(xiàng);(2)求滿(mǎn)足條件(1)的二階等差數(shù)列{an}的通項(xiàng)公式an;(3)若數(shù)列{an}首項(xiàng)a=2,且滿(mǎn)足cn-bn+1+3an=-2n+1(n∈N*?),求數(shù)列{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東汕頭達(dá)濠中學(xué)高一上期末數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分18分)知函數(shù)的圖象的一部分如下圖所示。

(1)求函數(shù)的解析式;

(2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.

(文)已知數(shù)列中,

(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和;

(3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.

設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).

(1)求k值;

(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案