3.以下四個命題正確的個數(shù)( 。
①用反證法證明數(shù)學(xué)命題時首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個奇數(shù)”時正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個奇數(shù)或都是偶數(shù)”;
②在復(fù)平面內(nèi),表示兩個共軛復(fù)數(shù)的點關(guān)于實軸對稱;
③在回歸直線方程$\stackrel{∧}{y}$=-0.3x+10中,當變量x每增加一個單位時,變量$\stackrel{∧}{y}$平均增加0.3個單位;
④拋物線y=x2過點($\frac{3}{2}$,2)的切線方程為2x-y-1=0.
A.1B.2C.3D.4

分析 利用反證法的反射,共軛復(fù)數(shù)在復(fù)平面的位置關(guān)系,回歸直線方程兩個變量的關(guān)系,拋物線過某點切線的求法,即可求得答案.

解答 解:對命題進行一一判斷:
①用反證法證明數(shù)學(xué)命題時首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個奇數(shù)”時正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個奇數(shù)或都是偶數(shù)”,故①正確;
②在復(fù)平面內(nèi),表示兩個共軛復(fù)數(shù)的點關(guān)于實軸對稱,故②正確;
③在回歸直線方程$\stackrel{∧}{y}$=-0.3x+10中,當變量x每增加一個單位時,變量$\stackrel{∧}{y}$平均減少0.3個單位,故③錯誤;                                                      
④拋物線y=x2過點($\frac{3}{2}$,2)的切線方程為2x-y-1=0或4x-y-4=0.
取拋物線上一點(x0,y0),
∵y′=2x,∴拋物線y=x2上一點(x0,y0)的切線方程為y-${{x}_{0}}^{2}$=2x0(x-x0),
∵切線過點($\frac{3}{2}$,2),將點($\frac{3}{2}$,2)代入切線方程,
∴${{x}_{0}}^{2}$-3x0+2=0,
∴x0=1或x0=2,
故拋物線y=x2過點($\frac{3}{2}$,2)的切線方程為2x-y-1=0或4x-y-4=0.
故④錯誤.
綜上,①②正確,
故選:B.

點評 本題考查學(xué)生對基礎(chǔ)知識的轉(zhuǎn)化能力,以及靈活利用知識進行求解問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x,m,n,y成等差數(shù)列,x,p,q,y成等比數(shù)列,則$\frac{{{{({m+n})}^2}}}{pq}$的取值范圍是(-∞,0]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校為了解一個英語教改實驗班的情況,舉行了一次測試,將該班30位學(xué)生的英語成績進行統(tǒng)計,得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求出該班學(xué)生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(Ⅱ)從成績低于80分的學(xué)生中隨機抽取2人,規(guī)定抽到的學(xué)生成績在[50,60)的記1績點分,在[60,80)的記2績點分,設(shè)抽取2人的總績點分為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在xOy平面上,點A,B在單位圓上,已知A(1,0),∠AOB=θ(0<θ<π)
(Ⅰ)若點B(-$\frac{3}{5}$,$\frac{4}{5}$),求$\frac{sin(π+θ)+cos(\frac{3π}{2}-θ)}{cos(\frac{π}{2}+θ)tan(π-θ)}$的值;
(Ⅱ)若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{18}{13}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=1.且對于任意實數(shù)x,不等式|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為θ.則sinθ等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知(1+x+ax3)(x+$\frac{1}{x}$)5展開式的各項系數(shù)和為96,則該展開式的常數(shù)項是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若2弧度的圓心角所夾的扇形的面積是4cm2,則該圓心角所對的弧長為( 。
A.2πcmB.2cmC.4πcmD.4cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=$\frac{x-2}{e^x}$在x=x0處取得極值,則x0=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b均為正數(shù),且a+b=1,則$\frac{4}{a}$+$\frac{9}$的最小值為( 。
A.24B.25C.26D.27

查看答案和解析>>

同步練習(xí)冊答案