【題目】為了調(diào)查高中學(xué)生喜歡打羽毛球與性別是否有關(guān),調(diào)查人員就“是否喜歡打羽毛球”這個問題,分別隨機調(diào)查了名女生和名男生,根據(jù)調(diào)查結(jié)果得到如圖所示的等高條形圖:
(1)完成下列列聯(lián)表:
喜歡打羽毛球 | 不喜歡打羽毛球 | 總計 | |
女生 | |||
男生 | |||
總計 |
(2)能否在犯錯誤的概率不超過的前提下認為喜歡打羽毛球與性別有關(guān).
參考數(shù)表:
參考公式:,其中.
【答案】(1)見解析(2) 不能在犯錯誤的概率不超過的前提下認為喜歡打羽毛球與性別有關(guān).
【解析】分析:(1)根據(jù)等高條形圖計算可得女生不喜歡打羽毛球的人數(shù)為,男性不喜歡打羽毛球的人數(shù)為.據(jù)此完成列聯(lián)表即可.
(2)結(jié)合(1)中的列聯(lián)表計算可得,則不能在犯錯誤的概率不超過的前提下認為喜歡打羽毛球與性別有關(guān).
詳解:(1)根據(jù)等高條形圖,女生不喜歡打羽毛球的人數(shù)為,
男性不喜歡打羽毛球的人數(shù)為.
填寫列聯(lián)表如下:
喜歡打羽毛球 | 不喜歡打羽毛球 | 總計 | |
女生 | |||
男生 | |||
總計 |
(2)根據(jù)列聯(lián)表中數(shù)據(jù),計算
,
所以不能在犯錯誤的概率不超過的前提下認為喜歡打羽毛球與性別有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機構(gòu)進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下:,,,,,,,,,,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進價是每件30元的商品,在市場銷售中發(fā)現(xiàn),此商品的銷售單價元與日銷售量件之間有如下關(guān)系
銷售單價(元) | 30 | 40 | 45 | 50 |
日銷售量(件) | 60 | 30 | 15 | 0 |
(1)在平面直角坐標系中,根據(jù)表中提供的數(shù)據(jù)描出實數(shù)對對應(yīng)的點,并確定與的一個函數(shù)關(guān)系式;
(2)設(shè)經(jīng)營此商品的日銷售利潤為元,根據(jù)上述關(guān)系式寫出關(guān)于的函數(shù)關(guān)系式,
并指出銷售單價為多少時,才能獲得最大日銷售利潤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果定義在上的函數(shù),對任意的,都有, 則稱該函數(shù)是“函數(shù)”.
(I)分別判斷下列函數(shù):①;②; ③,是否為“函數(shù)”?(直接寫出結(jié)論)
(II)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍.
(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個算法流程圖,當輸入的x=5時,那么運行算法流程圖輸出的結(jié)果是( )
A.10
B.20
C.25
D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為 和P,且甲、乙兩人各射擊一次得分之和為2的概率為 .假設(shè)甲、乙兩人射擊互不影響,則P值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則該三棱錐S﹣ABC的外接球的表面積為( )
A.32π
B.
C.
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設(shè)為P為AC的中點,Q為AB上一點,使PQ⊥OA,并計算 的值;
(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com