【題目】設(shè)數(shù)列的通項(xiàng)公式是(表示不超過(guò)實(shí)數(shù)的最大整數(shù)).
(1)證明:、、、、都是數(shù)列的項(xiàng);
(2)是否是數(shù)列的項(xiàng),證明你的結(jié)論;
(3)證明:有無(wú)窮多個(gè)2的正整數(shù)冪是數(shù)列的項(xiàng).
【答案】(1)或;(2)見(jiàn)解析(3)見(jiàn)解析
【解析】
(1)因?yàn)?/span>,,,,,
所以,、、、、都是數(shù)列的項(xiàng).
(2)因?yàn)?/span>,所以,數(shù)列是不減的.而,
,故不是數(shù)列的項(xiàng).
(3)首先證明:存在無(wú)窮多個(gè)正整數(shù),使得,其中,表示的小數(shù)部分.事實(shí)上,若只有有限個(gè)正整數(shù),使得,其中,表示的小數(shù)部分.事實(shí)上,若只有有限個(gè)正整數(shù),使得,不妨設(shè)是使得成立的最大正整數(shù).
故(),即.而是一個(gè)正的常數(shù),故對(duì)于足夠大的正整數(shù),有,矛盾.
對(duì)于每一個(gè)滿(mǎn)足的正整數(shù),令.則
.
故.從而,.
這就證明了有無(wú)窮多個(gè)2的正整數(shù)冪是數(shù)列的項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①若函數(shù)在區(qū)間上單調(diào)遞增,則;
②若 (且),則的取值范圍是;
③若函數(shù),則對(duì)任意的,都有;
④若 (且),在區(qū)間上單調(diào)遞減,則.
其中所有正確命題的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)業(yè)合作社生產(chǎn)了一種綠色蔬菜共噸,如果在市場(chǎng)上直接銷(xiāo)售,每噸可獲利萬(wàn)元;如果進(jìn)行精加工后銷(xiāo)售,每噸可獲利萬(wàn)元,但需另外支付一定的加工費(fèi),總的加工(萬(wàn)元)與精加工的蔬菜量(噸)有如下關(guān)系:設(shè)該農(nóng)業(yè)合作社將(噸)蔬菜進(jìn)行精加工后銷(xiāo)售,其余在市場(chǎng)上直接銷(xiāo)售,所得總利潤(rùn)(扣除加工費(fèi))為(萬(wàn)元).
(1)寫(xiě)出關(guān)于的函數(shù)表達(dá)式;
(2)當(dāng)精加工蔬菜多少?lài)崟r(shí),總利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;
(2)若,求函數(shù)的單調(diào)遞減區(qū)間;
(3)當(dāng)時(shí),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓與雙曲線(xiàn)有公共焦點(diǎn),且左、右焦點(diǎn)分別為,.這兩條曲線(xiàn)在第一象限的交點(diǎn)為,是以為底邊的等腰三角形.若,記橢圓與雙曲線(xiàn)的離心率分別為、,則的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)圖象如圖,是的導(dǎo)函數(shù),則下列數(shù)值排序正確的是( )
A.
B.
C.
D.
【答案】C
【解析】結(jié)合函數(shù)的圖像可知過(guò)點(diǎn)的切線(xiàn)的傾斜角最大,過(guò)點(diǎn)的切線(xiàn)的傾斜角最小,又因?yàn)辄c(diǎn)的切線(xiàn)的斜率,點(diǎn)的切線(xiàn)斜率,直線(xiàn)的斜率,故,應(yīng)選答案C。
點(diǎn)睛:本題旨在考查導(dǎo)數(shù)的幾何意義與函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)的綜合運(yùn)用。求解時(shí)充分借助題設(shè)中所提供的函數(shù)圖形的直觀(guān),數(shù)形結(jié)合進(jìn)行解答。先將經(jīng)過(guò)兩切點(diǎn)的直線(xiàn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到與函數(shù)的圖像相切,再將經(jīng)過(guò)兩切點(diǎn)的直線(xiàn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)到與函數(shù)的圖像相切,這個(gè)過(guò)程很容易發(fā)現(xiàn),從而將問(wèn)題化為直觀(guān)圖形的問(wèn)題來(lái)求解。
【題型】單選題
【結(jié)束】
9
【題目】已知、為雙曲線(xiàn):的左、右焦點(diǎn),點(diǎn)在上,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若存在使得,求實(shí)數(shù)的取值范圍;
(Ⅲ)若當(dāng)時(shí)恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l1:4x-3y+6=0和直線(xiàn)l2:x=-.若拋物線(xiàn)C:y2=2px(p>0)上的點(diǎn)到直線(xiàn)l1和直線(xiàn)l2的距離之和的最小值為2.
(1)求拋物線(xiàn)C的方程;
(2)若以?huà)佄锞(xiàn)上任意一點(diǎn)M為切點(diǎn)的直線(xiàn)l與直線(xiàn)l2交于點(diǎn)N,試問(wèn)在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com