已知無窮數(shù)列{an}具有如下性質(zhì):①a1為正整數(shù);②對于任意的正整數(shù)n,當an為偶數(shù)時,an+1=
a n
2
;當an為奇數(shù)時,an+1=
an+1
2
.在數(shù)列{an}中,若當n≥k時,an=1,當1≤n<k時,an>1(k≥2,k∈N*),則首項a1可取數(shù)值的個數(shù)為
 
(用k表示).
分析:我們用倒推的方式,當n≥k時,an=1,則an-1=2,an-2=3或4,即2個;an-3=5或6或7或8,即4個;an-4=9或10或11或12或13或14或15或16,即8個,從而可得結論.
解答:解:我們用倒推的方式,∵對于任意的正整數(shù)n,當an為偶數(shù)時,an+1=
a n
2
;
當an為奇數(shù)時,an+1=
an+1
2
,在數(shù)列{an}中,若當n≥k時,an=1,
∴an-1=2,an-2=3或4,即2個;an-3=5或6或7或8,即4個;an-4=9或10或11或12或13或14或15或16,即8個,
由此可知首項a1可取數(shù)值的個數(shù)為2k-2個.
故答案為:2k-2
點評:本題考查數(shù)列遞推式,考查學生分析解決問題的能力,用倒推的方式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知無窮數(shù)列{an}前n項和Sn=
13
an-1
,則數(shù)列{an}的各項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知無窮數(shù)列{an}中a1=1,且滿足從第二項開始每一項與前一項的比值為同一個常數(shù)-
1
2
,則無窮數(shù)列{an}的各項和
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閔行區(qū)一模)已知無窮數(shù)列{an},首項a1=3,其前n項和為Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若數(shù)列{an}的各項和為-
8
3
a
,則a=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•普陀區(qū)二模)已知無窮數(shù)列{an}中,a1,a2,…,am是以10為首項,以-2為公差的等差數(shù)列;am+1,am+2,…,a2m是以
1
2
為首項,以
1
2
為公比的等比數(shù)列(m≥3,m∈N*);并且對一切正整數(shù)n,都有an+2m=an成立.
(1)當m=3時,請依次寫出數(shù)列{an}的前12項;
(2)若a23=-2,試求m的值;
(3)設數(shù)列{an}的前n項和為Sn,問是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am構成首項為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構成首項為
1
2
,公比為
1
2
的等比數(shù)列,其中m≥3,m∈N+,
(l)當1≤n≤2m,n∈N+,時,求數(shù)列{an}的通項公式;
(2)若對任意的n∈N+,都有an+2m=an成立.
①當a27=
1
64
時,求m的值;
②記數(shù)列{an}的前n項和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案