已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,∠A=30°,b=
3
,a=1,則∠B=
 
考點(diǎn):正弦定理
專題:解三角形
分析:根據(jù)題目中的條件,利用正弦定理可直接求出角B的正弦值,依據(jù)邊的關(guān)系可求角的大。
解答: 解:
a
sinA
=
b
sinB
1
sin30°
=
3
sinB
∴sinB=
3
2

∵b>a
∴∠B=60°或120°
故答案為:60°或120°
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):正弦定理的應(yīng)用,三角形解的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中裝有6個(gè)形狀大小完全相同的小球,其中紅球有3個(gè),編號(hào)為1,2,3;黑球有2個(gè),編號(hào)為1,2;白球有一個(gè),編號(hào)為1.現(xiàn)從袋中一次隨機(jī)抽取3個(gè)球.
(1)求取出的三個(gè)球的顏色都不相同的概率;
(2)記取得1號(hào)球的個(gè)數(shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log185=a,18b=3,試用a、b表示log4512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c是Rt△ABC的三邊,c為斜邊,若a2(a+b)+b2(c+a)+c2(b+a)≥kabc恒成立,則k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2x-2-x=3,則4x+4-x的值(  )
A、6B、7C、9D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
x,g(x)=log
1
2
x,記函數(shù)h(x)=
f(x),f(x)≤g(x)
g(x),f(x)>g(x)
,則不等式h(x)≥
2
2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin(x+
π
6
)圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再將圖象向右平移
π
3
個(gè)單位,那么所得圖象的函數(shù)解析式為(  )
A、y=-cos2x
B、y=cos2x
C、y=sin(
1
2
x-
π
6
)
D、y=sin(
1
2
x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)組織春游,為了確定春游地點(diǎn),打算從該學(xué)校學(xué)號(hào)為0034~2037的所有學(xué)生中,采用系統(tǒng)抽樣選50名進(jìn)行調(diào)查,則學(xué)號(hào)為2003的同學(xué)被抽到的可能性為(  )
A、
1
2003
B、
1
2004
C、
50
2003
D、
50
2004

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(2,0)的直線被圓x2+y2-2x-4y-11=0截得的弦長(zhǎng)為2
15
,則該直線的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案