【題目】若關(guān)于x的方程|x4x3|=axR上存在4個不同的實根則實數(shù)a的取值范圍為(  )

A. B. C. D.

【答案】A

【解析】

根據(jù)方程和函數(shù)的關(guān)系轉(zhuǎn)化為函數(shù),利用參數(shù)分離法,構(gòu)造函數(shù),求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性和極值,利用數(shù)形結(jié)合進行求解即可.

x=0時,0=0,0為方程的一個根.

x0時,方程|x4﹣x3|=ax等價為a=|x3﹣x2|

f(x)=x3﹣x2,f′(x)=3x2﹣2x,

f′(x)00x,由f′(x)0x0x,

f(x)在(0, )上遞減,在上遞增,又f(1)=0,

∴當x=時,函數(shù)f(x)取得極小值f()=﹣,則|f(x)|取得極大值|f(|=,

∴設(shè)的圖象如下圖所示,

則由題可知當直線y=ag(x)的圖象有3個交點時0a,

此時方程|x4﹣x3|=axR上存在4個不同的實根,

故答案為:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)上的單調(diào)減函數(shù),已知,,且在定義域內(nèi)恒成立,則實數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當平面與平面垂直時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面積大于9平方米,則DN的長應(yīng)在什么范圍內(nèi)?

(2)當DN的長度為多少時,矩形花壇AMPN的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2aa+1]上不單調(diào),求實數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題px∈R,exmx=0,qx∈R,x2-2mx+1≥0,若p∨(q)為假命題,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:


2

3

4

5

6


2.2

3.8

5.5

6.5

7.0

若由資料知,yx呈線性相關(guān)關(guān)系,試求:

1)回歸直線方程;

2)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

同步練習冊答案