精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的一段圖象過點(diǎn)(0,1),如圖所示,函數(shù)f(x)的解析式
 
分析:先根據(jù)圖象然后確定函數(shù)周期進(jìn)而得到ω的值,再將x=
12
時y=0代入求出φ,利用圖象經(jīng)過(0,1)求出A可得答案.
解答:解:由圖象可知 T=π∴ω=
π
=2
∴函數(shù)可以表示為:y=Asin(2x+φ)
又因?yàn)閤=
12
時,代入可得Asin(
6
+
φ)=0∴
6
+
φ=kπ,∵|φ|<
π
2
,k=1時∴φ=
π
6

∴函數(shù)解析式為:y=Asin(2x+
π
6
),函數(shù)經(jīng)過(0,1),Asin
π
6
=1,解得:A=2
故答案為:y=2sin(2x+
π
6
點(diǎn)評:本題主要考查已知三角函數(shù)的部分圖象求函數(shù)解析式的問題.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若圖象g(x)與函數(shù)f(x)的圖象關(guān)于點(diǎn)P(4,0)對稱,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)
的圖象(部分)如圖所示,則ω,φ分別為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-
π
6
,
3
]
時,函數(shù)f(x)=Asin(ωx+θ) (A>0,ω>0,|θ|<
π
2
)
的圖象如圖所示.
(1)求函數(shù)f(x)在[-
π
6
,
3
]
上的表達(dá)式;
(2)求方程f(x)=
2
2
[-
π
6
3
]
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<
π
2
)
的一段圖象如圖5所示:將y=f(x)的圖象向右平移m(m>0)個單位,可得到函數(shù)y=g(x)的圖象,且圖象關(guān)于原點(diǎn)對稱,g(
π
2013
)>0

(1)求A、ω、φ的值;
(2)求m的最小值,并寫出g(x)的表達(dá)式;
(3)若關(guān)于x的函數(shù)y=g(
tx
2
)
在區(qū)間[-
π
3
π
4
]
上最小值為-2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R,|φ|<
π
2
)
的圖象(部分)如圖所示,則f(x)的解析式是( 。
A、f(x)=5sin(
π
3
x+
π
6
)
B、f(x)=5sin(
π
6
x-
π
6
)
C、f(x)=5sin(
π
6
x+
π
6
)
D、f(x)=5sin(
π
3
x-
π
6
)

查看答案和解析>>

同步練習(xí)冊答案