已知函數(shù)f(x)=
ax2-(1+a)x+1

(1)當(dāng)a=0時(shí),求證函數(shù)f(x)在它的定義域上單調(diào)遞減
(2)是否存在實(shí)數(shù)a使得區(qū)間[-1,1]上一切x都滿足f(x)≤
3
,若存在,求實(shí)數(shù)a的值;若不存在,說明理由.
(1)a=0時(shí),f(x)=
1-x
,定義域?yàn)椋?∞,1];
∵f/(x)=-
1
2
x
<0

∴函數(shù)f(x)在它的定義域上單調(diào)遞減
(2)假設(shè)存在實(shí)數(shù)a使得區(qū)間[-1,1]上一切x都滿足f(x)≤
3
,
f(x)=
ax2-(1+a)x+1
3

即-1≤ax2-(1+a)x≤2在區(qū)間[-1,1]上恒成立
∴-1≤2a+1≤2
-1≤a≤
1
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,其中a為實(shí)數(shù).
(1)設(shè)t>0為常數(shù),求函數(shù)f(x)在區(qū)間[t,t+2]上的最小值;
(2)若對(duì)一切x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)對(duì)于一切實(shí)數(shù)x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,則當(dāng)x∈(0,
1
2
),不等式f(x)+2<logax恒成立時(shí),實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
a•2x+a-1
2x+1

(1)確定a的值,使f(x)為奇函數(shù);
(2)在(1)的條件下,解關(guān)于x的不等式f[loga(x+1)]+f[loga
1
3x-5
)]>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=1-
4
2ax+a
(a>0且a≠1)是定義在(-1,1)上的奇函數(shù).
(1)求a的值
(2)判斷函數(shù)f(x)的單調(diào)性(不用證明),并解關(guān)于t的不等式f(1-t)+f(3-2t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)y=f(x)的圖象與函數(shù)y=|x+1|的圖象關(guān)于原點(diǎn)對(duì)稱,則f(x)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=1+
m
ex-1
是奇函數(shù),則m的值為( 。
A.0B.
1
2
C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知最小正周期為2的函數(shù)y=f(x),當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)(x∈R)的圖象與y=|log5x|的圖象的交點(diǎn)個(gè)數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+1(a、b∈R)
(1)若f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立,求實(shí)數(shù)a、b的值;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)在(1)的條件下,若f(x)≤m2-2am+2對(duì)所有x∈[-1,
2
-1],a∈[-1,1]
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案