【題目】已知△ABC外接圓半徑是2, ,則△ABC的面積最大值為
【答案】
【解析】解:∵△ABC外接圓半徑是2, , ∴由正弦定理 ,可得: =2×2,解得:sinA= ,
∵A∈(0,π),
∴A= ,或 ,
∴當(dāng)A= 時(shí),由余弦定理可得:
12=AB2+AC2﹣2ABACcosA=AB2+AC2﹣ABAC≥ABAC,
此時(shí)S△ABC= ABACsinA≤ =3 .
當(dāng)A= 時(shí),由余弦定理可得:12=AB2+AC2﹣2ABACcosA=AB2+AC2+ABAC≥3ABAC,
解得:4≥ABAC,此時(shí)S△ABC= ABACsinA≤ = .
∴△ABC的面積最大值為3 .
所以答案是: .
【考點(diǎn)精析】利用正弦定理的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系xoy中,橢圓的離心率為,過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)已知點(diǎn)P(2,1),直線(xiàn)與橢圓C相交于A,B兩點(diǎn),且線(xiàn)段AB被直線(xiàn)OP平分.
①求直線(xiàn)的斜率;②若,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.
(1)求袋中原有白球的個(gè)數(shù);
(2)求取球兩次終止的概率
(3)求甲取到白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,首項(xiàng),且,正項(xiàng)數(shù)列滿(mǎn)足,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,是否存在正整數(shù),使得對(duì)任意正整數(shù),恒成立?若存在,求正整數(shù)的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)“過(guò)關(guān)游戲”規(guī)則規(guī)定:在地關(guān)要拋擲顆骰子次,如果這次拋擲所出現(xiàn)的點(diǎn)數(shù)和大于,則算過(guò)關(guān).
(Ⅰ)此游戲最多能過(guò)__________關(guān).
(Ⅱ)連續(xù)通過(guò)第關(guān)、第關(guān)的概率是__________.
(Ⅲ)若直接挑戰(zhàn)第關(guān),則通關(guān)的概率是__________.
(Ⅳ)若直接挑戰(zhàn)第關(guān),則通關(guān)的概率是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | |||||||
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | ||||||
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:
(2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)過(guò)點(diǎn)且與曲線(xiàn)相交于,兩點(diǎn).
(1)求曲線(xiàn)的直角坐標(biāo)方程;
(2)若,求直線(xiàn)的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小陳同學(xué)進(jìn)行三次定點(diǎn)投籃測(cè)試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒(méi)有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.
(1)求小陳同學(xué)三次投籃至少命中一次的概率;
(2)記小陳同學(xué)三次投籃命中的次數(shù)為隨機(jī)變量,求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com