證明(n∈N*),假設(shè)n=k成立,當n=k+1時,左端增加的項有________項.

解析:2k+1-1-2k+1=2k.

答案:2k

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

17、如圖,在正四棱錐P-ABCD中,點M為棱AB的中點,點N為棱PC上的點.
(1)若PN=NC,求證:MN∥平面PAD;
(2)試寫出(1)的逆命題,并判斷其真假.若為真,請證明;若為假,請舉反例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)設(shè)點F是拋物線L:y2=4x的焦點,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是拋物線L上的n個不同的點n(n≥3,n∈N*
(1)若拋物線L上三點P1、P2、P3的橫坐標之和等于4,求|
FP1
|+|
FP2
|+|
FP3
|
的值;
(2)當n≥3時,若
FP1
+
FP2
+…+
FPn
=
0
,求證:|
FP1
|+|
FP2
|+…+|
FPn
|   =2n
;
(3)若將題設(shè)中的拋物線方程y2=4x推廣為y2=2px(p>0),請類比小題(2),寫出一個一般化的命題及其逆命題,并判斷其逆命題的真假.若是真命題,請予以證明;若是假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:上海市普陀區(qū)2012屆高三上學期期末質(zhì)量抽測數(shù)學文科試題 題型:044

設(shè)點F是拋物線L:y2=4x的焦點,P1(x1,y1)P2(x2,y2)Pn(xn,yn)是拋物線L上的n個不同的點n(n≥3,n∈N*)

(1)若拋物線L上三點P1、P2、P3的橫坐標之和等于4,求的值;

(2)當n≥3時,若,求證:;

(3)若將題設(shè)中的拋物線方程y2=4x推廣為y2=2px(p>0),請類比小題(2),寫出一個一般化的命題及其逆命題,并判斷其逆命題的真假.若是真命題,請予以證明;若是假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)點F是拋物線L:y2=4x的焦點,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是拋物線L上的n個不同的點n(n≥3,n∈N*
(1)若拋物線L上三點P1、P2、P3的橫坐標之和等于4,求數(shù)學公式的值;
(2)當n≥3時,若數(shù)學公式,求證:數(shù)學公式;
(3)若將題設(shè)中的拋物線方程y2=4x推廣為y2=2px(p>0),請類比小題(2),寫出一個一般化的命題及其逆命題,并判斷其逆命題的真假.若是真命題,請予以證明;若是假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

設(shè)點F是拋物線L:y2=4x的焦點,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)是拋物線L上的n個不同的點n(n≥3,n∈N*
(1)若拋物線L上三點P1、P2、P3的橫坐標之和等于4,求的值;
(2)當n≥3時,若,求證:;
(3)若將題設(shè)中的拋物線方程y2=4x推廣為y2=2px(p>0),請類比小題(2),寫出一個一般化的命題及其逆命題,并判斷其逆命題的真假.若是真命題,請予以證明;若是假命題,請說明理由.

查看答案和解析>>

同步練習冊答案