已知點P(x、y)滿足不等式組數(shù)學(xué)公式,則則x2+y2+2x+2y的最大值是________.

37
分析:本題屬于線性規(guī)劃中的延伸題,對于可行域不要求線性目標函數(shù)的最值,而是求可行域內(nèi)的點與點(-1,-1)構(gòu)成的線段的長度問題,注意最后要平方.
解答:解:先根據(jù)約束條件畫出可行域,
z=x2+y2+2x+2y=(x+1)2+(y+1)2-2,
表示可行域內(nèi)點到點P(-1,-1)距離的平方減2,
點D到點A(4,3)的距離是點P到區(qū)域內(nèi)的最大值,
此時d==
∴x2+y2+2x+2y的最大值為39-2=37;
故答案為37.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識別目標函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.
(。┣笞C:直線AB恒過一定點,并求出該定點的坐標;
(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知集合Ω={(x,y)|x2+y2≤2009},若點P(x,y)、點P′(x′,y′)滿足x≤x′且y≥y′,則稱點P優(yōu)于P′.如果集合Ω中的點Q滿足:不存在Ω中的其它點優(yōu)于Q,則所有這樣的點Q構(gòu)成的集合為
{(x,y)|x2+y2=2009,x≤0且y≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點F1(-
2
,0)
、F2(
2
,0)
,曲線C上的動點P(x,y)滿足
.
PF1
.
PF2
+|
.
PF1
|×|
.
PF2
|=2.
(I)求曲線C的方程;
(II)設(shè)直線l:y=kx+m(k≠0),對定點A(0,-1),是否存在實數(shù)m,使直線l與曲線C有兩個不同的交點M、N,滿足|AM|=|AN|?若存在,求出m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA、EB,切點為A、B.直線AB是否恒過定點,若是,求出定點坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市如皋中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知集合Ω={(x,y)|x2+y2≤2009},若點P(x,y)、點P′(x′,y′)滿足x≤x′且y≥y′,則稱點P優(yōu)于P′.如果集合Ω中的點Q滿足:不存在Ω中的其它點優(yōu)于Q,則所有這樣的點Q構(gòu)成的集合為   

查看答案和解析>>

同步練習(xí)冊答案