分析 (I)由Sn=n(n+1)2,可得n=1時(shí),a1=S1=1;n≥2時(shí),an=Sn-Sn-1.
(II)bn=an2n=n2n,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(I)∵Sn=n(n+1)2,∴n=1時(shí),a1=S1=1;n≥2時(shí),an=Sn-Sn-1=n(n+1)2-n(n−1)2=n.n=1時(shí)也成立.
∴an=n.
(II)bn=an2n=n2n,
∴數(shù)列{bn}的前項(xiàng)和Tn=12+222+323+…+n2n,
12Tn=122+223+…+n−12n+n2n+1,
∴12Tn=12+122+…+12n-n2n+1=12(1−12n)1−12-n2n+1=1−2+n2n+1,
∴Tn=2-2+n2n.
點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20152 | B. | 1006 | C. | 1007 | D. | 1008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com