14.已知A、B、F分別是橢圓${x^2}+\frac{y^2}{b^2}=1(0<b<1)$的右頂點(diǎn)、上頂點(diǎn)、左焦點(diǎn),設(shè)△ABF的外接圓的圓心坐標(biāo)為(p,q).若p+q>0,則橢圓的離心率的取值范圍為(0,$\frac{\sqrt{2}}{2}$).

分析 分別求出線(xiàn)段FA與AB的垂直平分線(xiàn)方程,聯(lián)立解出圓心坐標(biāo)P,利用p+q>0,與離心率計(jì)算公式即可得出.

解答 解:如圖所示,
線(xiàn)段FA的垂直平分線(xiàn)為:x=$\frac{1-\sqrt{1-^{2}}}{2}$.
線(xiàn)段AB的中點(diǎn)($\frac{1}{2}$,$\frac{2}$).
∵kAB=-b.
∴線(xiàn)段AB的垂直平分線(xiàn)的斜率k=$\frac{1}$.
∴線(xiàn)段AB的垂直平分線(xiàn)方程為:y-$\frac{2}$=$\frac{1}$(x-$\frac{1}{2}$),
把x=$\frac{1-\sqrt{1-^{2}}}{2}$=p代入上述方程可得:y=$\frac{^{2}-\sqrt{1-^{2}}}{2b}$=q.
∵p+q>0,
∴$\frac{1-\sqrt{1-^{2}}}{2}$+$\frac{^{2}-\sqrt{1-^{2}}}{2b}$>0.
化為:b>$\sqrt{1-^{2}}$,又0<b<1,
解得$\frac{\sqrt{2}}{2}$<b<1.
∴e=$\frac{c}{a}$=c=$\sqrt{1-^{2}}$∈(0,$\frac{\sqrt{2}}{2}$).
故答案為:(0,$\frac{\sqrt{2}}{2}$).

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、線(xiàn)段的垂直平分線(xiàn)方程、三角形外心性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.有一枚質(zhì)地均勻的正四面體骰子,四個(gè)表面分別寫(xiě)作1、2、3、4的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是該拋擲后落在底面的那一個(gè)數(shù)字”,已知b和c是先后拋擲該枚骰子得到的數(shù)字,函數(shù)f(x)=x2+bx+c(x∈R).
(1)若b=3,求函數(shù)f(x)有零點(diǎn)的概率;
(2)求函數(shù)f(x)在區(qū)間(-2,+∞)上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=3x-2ln$\frac{|x|}{2}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx-$\frac{ax}{2}$,(a>0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的a∈[1,2),都存在x0∈(0,1]使得不等式f(x0)+ea-$\frac{a}{2}$>m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,A,B是拋物線(xiàn)上過(guò)F的兩個(gè)端點(diǎn),設(shè)線(xiàn)段AB的中點(diǎn)M在l上的攝影為N,則$\frac{|MN|}{|AB|}$的值是( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)的定義域?yàn)閧x|x∈R,且x≠0},若對(duì)任意的x都有f(x)+f(-x)=0,當(dāng)x>0時(shí),f(x)=log2x,則不等式f(x)>1的解集為(  )
A.(2,+∞)B.(1,+∞)C.($-\frac{1}{2}$,0)∪(2,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x2-ax+2lnx.
(Ⅰ)若a=2,求曲線(xiàn)y=f(x)在點(diǎn)P(1,f(1))處的切線(xiàn);
(Ⅱ)若函數(shù)y=f(x)在定義域上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若${x_1}∈(0,\frac{1}{e}]$,且f(x1)≥t+f(x2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知O為三角形ABC內(nèi)一點(diǎn),且滿(mǎn)足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面積與△OAC的面積比值為$\frac{1}{3}$,則λ的值為( 。
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了研究某校的高三市三模的文科數(shù)學(xué)成績(jī),現(xiàn)隨機(jī)抽取了60名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行分析,現(xiàn)將成績(jī)按如下方式分為6組,第一組[80,90),第二組[90,100),…,第六組[130,140),得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中a的值;
(2)估計(jì)該校高三年級(jí)文科數(shù)學(xué)成績(jī)的眾數(shù)和平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)從成績(jī)?cè)赱110,130)的同學(xué)中用分層抽樣的方法抽取5位同學(xué),并從這5位同學(xué)中任選2人跟數(shù)學(xué)老師參與信息反饋,求選中2位數(shù)學(xué)成績(jī)不在同一組的同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案