對于向量
PAi
(i=1,2,…n),把能夠使得|
PA1
|+|
PA2
|+…+|
PAn
|取到最小值的點P稱為Ai(i=1,2,…n)的“平衡點”.如圖,矩形ABCD的兩條對角線相交于點O,延長BC至E,使得BC=CE,聯(lián)結(jié)AE,分別交BD、CD于F、G兩點.下列結(jié)論中,正確的是( 。
A、A、C的“平衡點”必為O
B、D、C、E的“平衡點”為D、E的中點
C、A、F、G、E的“平衡點”存在且唯一
D、A、B、E、D的“平衡點”必為F
考點:向量在幾何中的應用,平面向量的基本定理及其意義
專題:平面向量及應用
分析:利用平面向量知識求解.
解答: 解:A、C的“平衡點”為線段上的任意一點,故A錯誤;
D、C、E的“平衡點”為三角形內(nèi)部對3邊張角均為120°的點,故B錯誤;
A、F、G、E的“平衡點”是線段FG上的任意一點,故C錯誤;
A、B、E、D的“平衡點”必為F,故D正確.
故選:D.
點評:本題考查“平衡點”的求法,是中檔題,解題時要注意平面向量知識的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

斐波那契數(shù)列1,1,2,3,5,8,13,x,34,…中的x的值是( 。
A、19B、21C、26D、31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c,d∈R,則下列命題中一定成立的是(  )
A、若a>b,c>d則a>c
B、若a>b,則ac>bc
C、若a>-b,則c-a<c+b
D、若a2>b2,則a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線l與該拋物線交于A,B兩點,
AF
=3
FB
,A,B在拋物線的準線上的射影分別為D,C.若梯形ABCD的面積為8
3
,則拋物線的方程為( 。
A、y2=3
2
x
B、y2=
3
2
x
C、y2=
9
2
x
D、y2=
9
4
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當1≤x≤3時,函數(shù)f(x)=2x2-6x+c的值域為(  )
A、[f(1),f(3)]
B、[f(1),f(
3
2
)]
C、[f(
3
2
),f(3)]
D、[c,f(3)]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
c
均為單位向量,且|
a
+
b
|=1,則(
a
-
b
)•
c
的取值范圍是( 。
A、[0,1]
B、[-1,1]
C、[-
3
,
3
]
D、[0,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程z2=
.
z
,其中z為復數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD的中點,M是棱PC上的點,PA=PD=AD=2BC=2,CD=
3

(1)求證:PE∥平面BDM; 
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(log2x-2)(log4x-
1
2

(1)當x∈[2,4]時,求該函數(shù)的值域;
(2)若f(x)>mlog2x對于x∈[4,16]恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案