精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

1)求曲線的普通方程和直線的直角坐標方程;

2)設直線,軸的交點分別為,,若點在曲線位于第一象限的圖象上運動,求四邊形面積的最大值.

【答案】1;(2

【解析】

1)根據,利用平方關系消去參數,即可得到普通方程,將代入,即可得到直角坐標方程.

2)易得直線,軸的交點分別為的坐標,設曲線上的點,利用S四邊形OMPN求解.

1)由,得,

故曲線的普通方程為.

,代入上式,

故直線的直角坐標方程為.

2)易知直線,軸的交點分別為,

設曲線上的點

因為在第一象限,所以.

連接,則S四邊形OMPN,

.

時,四邊形面積的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】全國大學生機器人大賽是由共青團中央,全國學聯,深圳市人民政府聯合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內頂尖高校,經過嚴格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓練,備戰(zhàn)機器人大賽.

(i)從統計學數據看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團隊中任取兩個團隊,求至少有一個團隊為144分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】、是橢圓的左、右頂點,為橢圓上異于、的一點.

1是橢圓的上頂點,且直線與直線垂直,求點軸的距離;

2)過點的直線(不過坐標原點)與橢圓交于兩點,且點軸上方,點軸下方,若,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓E:a,b>0)過M2,) ,N(,1)兩點,O為坐標原點,

1)求橢圓E的方程;

2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,?若存在,寫出該圓的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】維生素C又叫抗壞血酸,是一種水溶性維生素,是高等靈長類動物與其他少數生物的必需營養(yǎng)素.維生素C雖不直接構成腦組織,也不向腦提供活動能源,但維生素C有多種健腦強身的功效,它是腦功能極為重要的營養(yǎng)物.維生素C的毒性很小,但食用過多仍可產生一些不良反應.根據食物中維C的含量可大致分為:含量很豐富:鮮棗、沙棘、獼猴桃、柚子,每100克中的維生素C含量超過100毫克;比較豐富:青椒、桂圓、番茄、草莓、甘藍、黃瓜、柑橘、菜花,每100克中維生素C含量超過50毫克;相對豐富:白菜、油菜、香菜、菠菜、芹菜、莧菜、菜苔、豌豆、豇豆、蘿卜,每100克中維生素C含量超過30~50毫克.現從獼猴桃、柚子兩種食物中測得每100克所含維生素C的量(單位:)得到莖葉圖如圖所示,則下列說法中不正確的是(

A.獼猴桃的平均數小于柚子的平均數

B.獼猴桃的方差小于柚子的方差

C.獼猴桃的極差為32

D.柚子的中位數為121

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某飼料廠原有陳糧10噸,又購進新糧x噸,現將糧食總庫存量的一半精加工為飼料.若被精加工的新糧最多可用噸,被精加工的陳糧最多可用y2噸,記,則函數的圖象為(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的短軸長為,離心率為.

(1)求橢圓的方程;

(2)若動直線與橢圓有且僅有一個公共點,分別過兩點作,垂足分別為,且記為點到直線的距離, 為點到直線的距離,為點到點的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為0),過點的直線的參數方程為t為參數),直線與曲線C相交于A,B兩點.

)寫出曲線C的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某小區(qū)抽取50戶居民進行月用電量調查,發(fā)現其用電量都在50到350度之間,將用電量的數據繪制成頻率分布直方圖如下.

(1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;

(2)若將用電量在區(qū)間內的用戶記為類用戶,標記為低用電家庭,用電量在區(qū)間內的用戶記為類用戶,標記為高用電家庭,現對這兩類用戶進行問卷調查,讓其對供電服務進行打分,打分情況見莖葉圖:

①從類用戶中任意抽取3戶,求恰好有2戶打分超過85分的概率;

②若打分超過85分視為滿意,沒超過85分視為不滿意,請?zhí)顚懴旅媪新摫,并根據列聯表判斷是否?/span>的把握認為“滿意度與用電量高低有關”?

滿意

不滿意

合計

類用戶

類用戶

合計

附表及公式:

<>0.050

0.010

0.001

3.841

6.635

10.828

, .

查看答案和解析>>

同步練習冊答案