(本小題滿(mǎn)分14分)已知是定義在上的奇函數(shù),且,若時(shí),有.
(1)解不等式;
(2)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.
解:任取且,則
∴,∴為增函數(shù)
,
即不等式的解集為.
(2)由于為增函數(shù),∴的最大值為對(duì)恒成立對(duì)任意的恒成立對(duì)任意的恒成立。
把看作的函數(shù),由于知其圖像是一條線(xiàn)段。
∴對(duì)任意的恒成立 或或.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
設(shè)函數(shù).
(1)求證:不論為何實(shí)數(shù)總為增函數(shù);
(2)確定的值,使為奇函數(shù)及此時(shí)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(a為實(shí)數(shù)).⑴若a<0,用函數(shù)單調(diào)性定義證明:在上是增函數(shù);⑵若a=0,的圖象與的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義在(0,+)上的函數(shù)是增函數(shù)
(1)求常數(shù)的取值范圍
(2)過(guò)點(diǎn)(1,0)的直線(xiàn)與()的圖象有交點(diǎn),求該直線(xiàn)的斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(2010·徐州模擬)已知f(x)=x2-2x+1,g(x)是一次函數(shù),且f[g(x)]=4x2,求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知二次函數(shù)f (x)=,設(shè)方程f (x)
=x的兩個(gè)實(shí)根為x1和x2.
(1)如果x1<2<x2<4,且函數(shù)f (x)的對(duì)稱(chēng)軸為x=x0,求證:x0>—1;
(2)如果∣x1∣<2,,∣x2—x1∣=2,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知二次函數(shù),且不等式的解集為。
(Ⅰ) 若方程有兩個(gè)相等的實(shí)根,求的解析式;
(Ⅱ) 若函數(shù)的最小值不大于,求實(shí)數(shù)的取值范圍。
(Ⅲ) 如何取值時(shí),函數(shù)()存在零點(diǎn),并求出零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=是R上的奇函數(shù).
(1)求a的值;
(2)求f(x)的反函數(shù)f-1(x).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com