已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且滿足S5=3a5-2,又a1,a2,a5依次成等比數(shù)列,數(shù)列{bn}滿足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k為大于0的常數(shù).
(1)求數(shù)列{an},{bn}的通項公式;
(2)記數(shù)列an+bn的前n項和為Tn,若當且僅當n=3時,Tn取得最小值,求實數(shù)k的取值范圍.
分析:(1)根據(jù)所給的等差數(shù)列的三項之間的關系,求出數(shù)列的首項和公差的關系,求出首項和公差,寫出數(shù)列的通項,根據(jù)所給的數(shù)列的遞推式,代入前面求出的數(shù)列的通項,整理仿寫一個通項,連續(xù)兩項做差,再利用累加得到要求的數(shù)列的通項.
(2)根據(jù)所求的兩個數(shù)列的通項.構造新數(shù)列,連續(xù)兩項做差,得到數(shù)列是一個遞增數(shù)列,當n=3時,取得最小值,根據(jù)條件做出k的取值范圍.
解答:解:(1)設等差數(shù)列{an}的公差為d,則S5=5a1+10d
∵S5=3a5-2=3(a1+4d)-2=3a1+12d-2
∴5a1+10d=3a1+12d-2
∴a1=d-1
∵a1,a2,a5依次成等比數(shù)列
∴a22=a1a5即(a1+d)2=a1(a1+4d)
化簡得:d=2a1
∴a1=1,d=2
∴an=a1+(n-1)d=2n-1
bn+1=bn+
k
2
an+1
2
=bn+
k
2n

bn+1-bn=
k
2n

當n≥2時,bn-bn-1=
k
2n-1
bn-1-bn-2=
k
2n-2

b2-b1=
k
2

bn-b1=
k
2n-1
+
k
2n-2
+
k
2
=k×(
2n-1-1
2-1
×
1
2n-1
)=k×
2n-1-1
2n-1
=k-
2k
2n-1

bn=-9+k-
2k
2n-1

當n=1時,b1=9滿足上式
bn=-9+k-
2k
2n-1
(n∈N*)

(2)∵an=2n-1,bn=-9+k-
k
2n-1
(n∈N*)

(an+1+bn+1)-(an+bn)=2+
k
2n
>0

∴數(shù)列an+bn是遞增數(shù)列
∵當n=3時,Tn取得最小值
a3+b3=5+(k-9-
k
4
)=
3k
4
-4<0
a4+b4=7+(k-9-
k
8
)=
7k
8
-2>0

解得
16
7
<k<
16
3
點評:本題考查數(shù)列的遞推式和數(shù)列的求和,本題解題的關鍵是應用函數(shù)的思想來解決數(shù)列的問題,本題是一個綜合題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)二模)已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S3=a4+6,且a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
1Sn
}的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為{an}的前n項和,則
S2-S1
S3-S2
的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃州區(qū)模擬)已知公差不為0的等差數(shù)列{an}的前3項和S3=9,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式和前n項和Sn
(2)設Tn為數(shù)列{
1anan+1
}的前n項和,若Tn≤λan+1對一切n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1=a,a∈N*,設數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

同步練習冊答案