【題目】求函數f(x)=﹣ x3+4x﹣1在[0,3]上的最大值和最小值.
【答案】解:由 f(x)=﹣ x3+4x﹣4,得f′(x)=﹣x2+4,
令f′(x)=0,則x=﹣2或x=2,
當x變化時,f′(x)和f(x)變化如下表:
x | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | + | 0 | ﹣ | ||
f(x) | ﹣4 | 增 |
| 減 | ﹣1 |
故函數f(x) 在[0,3]上有最大值,
最大值為f(2)= ,最小值為f(0)=﹣4
【解析】求出函數的導數,解關于導函數的方程,求出函數的單調區(qū)間,從而求出函數的最值即可.
【考點精析】本題主要考查了函數的最大(小)值與導數的相關知識點,需要掌握求函數在上的最大值與最小值的步驟:(1)求函數在內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質量,都會在植樹前對樹苗進行檢測.現從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數據的莖葉圖,并根據莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;
(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的最小正周期為π,它的一個對稱中心為(,0)
(1)求函數y=f(x)圖象的對稱軸方程;
(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知元素為實數的集合滿足下列條件:①, ;②若,則.
(I)若,求使元素個數最少的集合;
(II)若非空集合為有限集,則你對集合的元素個數有何猜測?并請證明你的猜測正確.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】P為圓C1:x2+y2=9上任意一點,Q為圓C2:x2+y2=25上任意一點,PQ中點組成的區(qū)域為M,在C2內部任取一點,則該點落在區(qū)域M上的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于.
(1)求直線l的方程.
(2)求圓心在直線l上且經過點M(2,1),N(4,-1)的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= .
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數單調性定義證明:f(x)在(1,+∞)上是增函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= , ①若f(a)=14,求a的值
②在平面直角坐標系中,作出函數y=f(x)的草圖.(需標注函數圖象與坐標軸交點處所表示的實數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com