函數(shù)g(x)=x3+mx2+nx+m2在x=1處有極值10,則m,n的值是(  )
分析:對(duì)函數(shù)進(jìn)行求導(dǎo),根據(jù)函數(shù)f(x)在x=-1有極值0,可以得到f(-1)=0,f′(-1)=0,代入求解即可
解答:解:∵g(x)=x3+mx2+nx+m2∴g′(x)=3x2+2mx+n
依題意可得
g(1)=10
g(1)=0
1+m+n+m2=10
3+2m+n=0        
聯(lián)立可得
m=4
n=-11
m=-3
n=3

當(dāng)m=-3,n=3時(shí),f′(x)=3x2-6x+3=3(x-1)2≥0,函數(shù)在R上單調(diào)遞增,函數(shù)無(wú)極值,舍
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)在某點(diǎn)取得極值的性質(zhì):若函數(shù)在取得極值⇒f′(x0)=0.反之結(jié)論不成立,即函數(shù)有f′(x0)=0,函數(shù)在該點(diǎn)不一定是極值點(diǎn),(還得加上在兩側(cè)有單調(diào)性的改變),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知真命題:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形”的充要條件為“函數(shù)y=f(x+a)-b 是奇函數(shù)”.
(1)將函數(shù)g(x)=x3-3x2的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
2x4-x
 圖象對(duì)稱(chēng)中心的坐標(biāo);
(3)已知命題:“函數(shù) y=f(x)的圖象關(guān)于某直線成軸對(duì)稱(chēng)圖象”的充要條件為“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)-b 是偶函數(shù)”.判斷該命題的真假.如果是真命題,請(qǐng)給予證明;如果是假命題,請(qǐng)說(shuō)明理由,并類(lèi)比題設(shè)的真命題對(duì)它進(jìn)行修改,使之成為真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間并比較f(x)與f(1)的大小關(guān)系;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)若n≥2,n∈N+,試猜想
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x2-72-x
,(x∈[0,1])

(1)求f(x)的值域A
(2)設(shè)a≥1,函數(shù)g(x)=x3-3ax-2a,x∈[0,1]的值域?yàn)锽,若A⊆B成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高一年級(jí)數(shù)學(xué)興趣小組的同學(xué)經(jīng)過(guò)研究,證明了以下兩個(gè)結(jié)論是完全正確的:①若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形,則函數(shù)y=f(x+a)-b是奇函數(shù);②若函數(shù)y=f(x+a)-b是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a,b)成中心對(duì)稱(chēng)圖形.請(qǐng)你利用他們的研究成果完成下列問(wèn)題:
(1)將函數(shù)g(x)=x3+6x2的圖象向右平移2個(gè)單位,再向下平移16個(gè)單位,求此時(shí)圖象對(duì)應(yīng)的函數(shù)解釋式,并利用已知條件中的結(jié)論求函數(shù)g(x)圖象對(duì)稱(chēng)中心的坐標(biāo);
(2)求函數(shù)h(x)=log2
1-x4x
圖象對(duì)稱(chēng)中心的坐標(biāo),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是同時(shí)滿(mǎn)足下列兩個(gè)性質(zhì)的函數(shù)f(x)的全體:①f(x)在其定義域上是單調(diào)函數(shù);②在f(x)的定義域內(nèi)存在閉區(qū)間[a,b],使得f(x)在[a,b]上的最小值是
a
2
,最大值是
b
2
.請(qǐng)解答以下問(wèn)題:
(1)判斷函數(shù)g(x)=-x3是否屬于集合M?并說(shuō)明理由,若是,請(qǐng)找出滿(mǎn)足②的閉區(qū)間[a,b];
(2)若函數(shù)h(x)=
x-1
+t∈M
,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案