【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
【答案】(1) ;(2) .
【解析】試題分析:(1) 由題意,則圓的方程為,又,直線的方程為,直線與圓相交得到的弦長為,則進而可得橢圓的方程.(2) 設(shè)直線的方程為,聯(lián)立直線PA和橢圓方程,可得點的坐標是,故直線的斜率為, ,所以.將線段BC,OP的長度用t來表示,則 , ,所以,整理得,又, ,所以.
試題解析:(Ⅰ)因為以為直徑的圓過點,所以,則圓的方程為,
又,所以,直線的方程為,直線與圓相交得到的
弦長為,則所以,
所以橢圓的方程為.
(Ⅱ)設(shè)直線的方程為,
由
整理得,
解得: , ,則點的坐標是,
故直線的斜率為,由于直線的斜率為,
所以 ,所以.
, ,
所以,
,所以,
整理得,又, ,所以.
科目:高中數(shù)學 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是y1 , y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m +a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1 , y2對應(yīng)的曲線C1 , C2如圖所示.
(1)求函數(shù)y1與y2的解析式;
(2)若該商場一共投資10萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學習小組對此進行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(III)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)誤差均不超過2顆,則認為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗,(II)中的回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構(gòu)成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體,從學生群體中隨機抽取了50名學生進行調(diào)查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如下表:
(I)從所調(diào)查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;
(III)將頻率視為概率,現(xiàn)從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱與四邊形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點, .
(I)求證:GM//平面CDE;
(II)求證:平面ACE⊥平面ACF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的圖象與y軸的交點為( ),它在y軸右側(cè)的第一個最高點和最低點分別為(x0 , 3),(x0+2π,﹣3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個函數(shù)的單調(diào)遞增區(qū)間和對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 看書 | 合計 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計 | 20 | 60 | 80 |
(1)根據(jù)以上數(shù)據(jù),能否有99%的把握認為“在20:00﹣22:00時間段居民的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X.求X的數(shù)學期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分) 已知中心在原點,焦點在軸上的橢圓C的離心率為,且經(jīng)過點.
(1)求橢圓C的方程;
(2)是否存在過點的直線與橢圓C相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com