二次函數(shù)f(x)的二次項(xiàng)系數(shù)為正,且對任意實(shí)數(shù)x恒有f(2+x)=f(2-x),若f(1-2x2)<f(1+2x-x2),則x的取值范圍是


  1. A.
    x>2
  2. B.
    x<-2或0<x<2
  3. C.
    -2<x<0
  4. D.
    無法確定
C
由f(2+x)=f(2-x)知x=2為對稱軸,由于距對稱軸較近的點(diǎn)的縱坐標(biāo)較小,∴|1-2x2-2|<|1+2x-x2-2|,解得-2<x<0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(t)=at2-
b
t+
1
4a
(t∈R)有最大值,且最大值為正實(shí)數(shù),集合A={x|
x-a
x
<0},集合B={x|x2<b2}
(1)求集合A和B;
(2)定義:“A-B={x∈A,且x∉B}”設(shè)a,b,x均為整數(shù),且x∈A.記P(E)為x取自集合A-B的概率,P(F)x取集合A∩B的概率.已知P(E)=
2
3
,P(F)=
1
3
.記滿足上述條件的所有a的值從小到大排列構(gòu)成的數(shù)列為{an},所有b的值從小到大排列構(gòu)成數(shù)列{bn}.
①求a1,a2,a3和b1,b2,b3;
②請寫出數(shù)列{an}和{bn}的通項(xiàng)公式(不必證明);
③如果在函數(shù)中f(t)中,a=an,b=bn,記f(t)的最大值為g(n),cn=
1-12g(n)
4g(n)
,Sn=c1c2+c2c3+…+cncn+1,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c滿足f(1)=0.
(I)若a>b>c,證明f(x)的圖象與x軸有兩個交點(diǎn),且這兩個交點(diǎn)間的距離d滿足:
3
2
<d<3;
(Ⅱ)設(shè)f(x)在x=
t+1
2
(t>0,t≠1)處取得最小值,且對任意實(shí)數(shù)x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若數(shù)列{cn}的前n項(xiàng)和為bn,求{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)<-2x的解集為(1,3).(1)若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式;(2)若f(x)的最小值為負(fù)數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
1
2
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

同步練習(xí)冊答案