分析 由x2=4y得y=$\frac{1}{4}{x}^{2}$,求出函數(shù)的導(dǎo)數(shù),根據(jù)題意和導(dǎo)數(shù)的幾何意義列出方程求出m的值.
解答 解:由x2=4y得,y=$\frac{1}{4}{x}^{2}$,則$y′=\frac{1}{2}x$,
∴在點(diǎn)P(m,n)處的切線斜率k=$\frac{1}{2}m$,
∵曲線x2=4y在點(diǎn)P(m,n)處的切線與直線2x+y-1=0垂直,
∴$\frac{1}{2}m$×(-2)=-1,解得m=1,
故答案為:1.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義:在切點(diǎn)處的斜率就是該點(diǎn)處的導(dǎo)數(shù)值,以及直線垂直的條件,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{2}$<a≤-1 | B. | a≤-$\frac{3}{2}$ | C. | a≤-1 | D. | a>-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{f(e)}{e+1}$>$\frac{f(π)}{π+1}$ | B. | $\frac{f(e)}{e+1}$<$\frac{f(π)}{π+1}$ | C. | $\frac{f(e)}{e+2}$>$\frac{f(π)}{π+2}$ | D. | $\frac{f(e)}{e+2}$<$\frac{f(π)}{π+2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,-1) | B. | (1,2) | C. | (-1,+∞) | D. | (-ln2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2015}{2016}$ | B. | $\frac{1007}{1008}$ | C. | 2015 | D. | 2016 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com