20.曲線x2=4y在點(diǎn)P(m,n)處的切線與直線2x+y-1=0垂直,則m=1.

分析 由x2=4y得y=$\frac{1}{4}{x}^{2}$,求出函數(shù)的導(dǎo)數(shù),根據(jù)題意和導(dǎo)數(shù)的幾何意義列出方程求出m的值.

解答 解:由x2=4y得,y=$\frac{1}{4}{x}^{2}$,則$y′=\frac{1}{2}x$,
∴在點(diǎn)P(m,n)處的切線斜率k=$\frac{1}{2}m$,
∵曲線x2=4y在點(diǎn)P(m,n)處的切線與直線2x+y-1=0垂直,
∴$\frac{1}{2}m$×(-2)=-1,解得m=1,
故答案為:1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義:在切點(diǎn)處的斜率就是該點(diǎn)處的導(dǎo)數(shù)值,以及直線垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={x|1≤x<5},C={x|-a<x≤a+3},若C∩A=C,則a的取值范圍為( 。
A.-$\frac{3}{2}$<a≤-1B.a≤-$\frac{3}{2}$C.a≤-1D.a>-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知y=f(x)為定義在R上的單調(diào)遞增函數(shù),y=f′(x)是其導(dǎo)函數(shù),若對(duì)任意x∈R的總有$\frac{f(x-1)}{f′(x-1)}$<x,則下列大小關(guān)系一定正確的是(  )
A.$\frac{f(e)}{e+1}$>$\frac{f(π)}{π+1}$B.$\frac{f(e)}{e+1}$<$\frac{f(π)}{π+1}$C.$\frac{f(e)}{e+2}$>$\frac{f(π)}{π+2}$D.$\frac{f(e)}{e+2}$<$\frac{f(π)}{π+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在正三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∠BAC=90°,AB=AC=AA1,點(diǎn)M,N分別為A1B和B1C1的中點(diǎn).
(1)求證:平面A1BC⊥平面MAC;
(2)求證:MN∥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+x+a,x<0\\ lnx,x>0\end{array}$,若函數(shù)f(x)的圖象在A、B兩點(diǎn)處的切線重合,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,-1)B.(1,2)C.(-1,+∞)D.(-ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸出的S=63,則輸入a的值可以是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.tan$\frac{9π}{8}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)全集U={-2,-1,0,1,2},A={-2,1,2},則∁UA={-1,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}的前n為Sn滿足Sn=$\frac{n}{2}$an,且a2≠0,則$\frac{{{S_{2015}}}}{{{S_{2016}}}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{1007}{1008}$C.2015D.2016

查看答案和解析>>

同步練習(xí)冊(cè)答案