6.不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面區(qū)域的面積為( 。
A.2B.4C.6D.8

分析 畫(huà)出約束條件的可行域,求出頂點(diǎn)坐標(biāo),然后求解可行域的面積.

解答 解:畫(huà)出不等式組表示的平面區(qū)域如下:
$\left\{\begin{array}{l}{x+y-2=0}\\{x+2y-4=0}\end{array}\right.$,可得A(0,2),
由$\left\{\begin{array}{l}{x+y-2=0}\\{x+3y-2=0}\end{array}\right.$,解得B(2,0),
由$\left\{\begin{array}{l}{x+2y-4=0}\\{x+3y-2=0}\end{array}\right.$可得C(8,-2).
直線x+2y-4=0過(guò)(2,0).
可行域的面積為:$\frac{1}{2}×2×(2+2)$=4.
故選:B.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(x)>0的解集為{x|-3<x<4},解關(guān)于x的不等式bx2+2ax-(c+3b)<0.
(2)若對(duì)任意x∈R,不等式f(x)≥2ax+b恒成立,求${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.定義在R上的偶函數(shù)f(x)滿足:f(4)=f(-2)=0,在區(qū)間(-∞,-3)與[-3,0]上分別遞增和遞減,則不等式xf(x)>0的解集為(-∞,-4)∪(-2,0)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知樣本數(shù)據(jù)x1,x2,…,x5的平均數(shù)為5,y1,y2,…,y10的平均數(shù)為8,則把兩組數(shù)據(jù)合并成一組以后,這組樣本數(shù)據(jù)的平均數(shù)為( 。
A.6B.6.5C.13D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若asinAsinB+bcos2A=$\sqrt{3}$a,則$\frac{a}$=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分別為PD、PC、BC的中點(diǎn).
(Ⅰ)求證:PA∥平面BDF;
(Ⅱ)求異面直線PB與EG所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知命題p:方程x2+2x+m=0沒(méi)有實(shí)數(shù)根,命題q:方程$\frac{x^2}{m+1}+\frac{y^2}{m-2}$=1表示雙曲線,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且Sn-an=n2-n,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}(n=2k-1)}\\{\frac{1}{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}}(n=2k)}\end{array}\right.$(k∈N+),數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求T2016

查看答案和解析>>

同步練習(xí)冊(cè)答案