分析 由圓的方程為求得圓心C,半徑r,由“若四邊形面積最小,則圓心與點P的距離最小時,即距離為圓心到直線的距離時,切線長PA,PB最小”,最后利用點到直線的距離求出直線的斜率即可..
解答 解:∵圓的方程為:x2+(y+1)2=1,
∴圓心C(0,-1),半徑r=1.
根據(jù)題意,若四邊形面積最小,當(dāng)圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最。芯長為$\sqrt{2}$,
∴PA=PB═$\sqrt{2}$,
∴圓心到直線l的距離為d=$\sqrt{3}$.
∵直線kx+y-2=0,
∴$\sqrt{3}$=$\frac{3}{\sqrt{{k}^{2}+1}}$,解得k=±$\sqrt{2}$,
所求直線的斜率為$±\sqrt{2}$
故答案為:$±\sqrt{2}$.
點評 本題的考點是直線與圓的位置關(guān)系,主要涉及了構(gòu)造四邊形及其面積的求法,解題的關(guān)鍵是“若四邊形面積最小,則圓心與點P的距離最小時,即距離為圓心到直線的距離時,切線長PA,PB最小”屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 異面 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 消耗1升汽油,乙車最多可行駛5千米 | |
B. | 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多 | |
C. | 某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油 | |
D. | 甲車以80千米/小時的速度行駛1小時,消耗10升汽油 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com